The phenomenological reptation-tube model is based on a single chain perspective and was originally proposed to explain the remarkable viscoelastic properties of dense entangled polymer liquids. However, simulations over the last two decades have revealed a fundamental tension in the model: it assumes that bonded, single-chain backbone stresses are the sole polymer contribution to the slowly relaxing component of stress storage and elasticity, but mounting evidence suggests that at the local level of forces it is interchain contributions that dominate, as in simple liquids. Here we show that based on a chain model constructed at the level of self-consistently determined primitive paths, an explicit force-level treatment of the correlated intermolecular contributions to stress that arise from chain uncrossability can essentially quantitatively predict the entanglement plateau modulus associated with the soft rubbery response of polymer liquids. Analogies to transient localization and elasticity in glass-forming liquids are identified. Predictions for the effect of macroscopic deformation and anisotropic orientational order on the tube diameter are also made. Based on the interchain stress perspective the theory reproduces some aspects of the rheological response to shear and extensional deformations associated with the single chain tube model.

1.
P. G.
de Gennes
,
J. Chem. Phys.
55
,
572
(
1971
).
2.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University Press
,
Oxford, UK
,
1986
).
3.
T. C. B.
McLeish
,
Adv. Phys.
51
,
1379
(
2002
).
4.
M.
Fixman
,
J. Chem. Phys.
95
,
1410
(
1991
).
5.
N.
Fatkullin
and
R.
Kimmich
,
Macromol. Symp.
146
,
103
, (
1999
).
6.
A. S.
Lodge
and
J.
Meissner
,
Rheol. Acta
12
,
41
(
1973
).
7.
J.
Gao
and
J. H.
Weiner
,
Macromolecules
25
,
1348
(
1992
).
8.
J.
Gao
and
J. H.
Weiner
,
Science
266
,
748
(
1994
).
9.
J.
Ramirez
,
S. K.
Sukumaran
, and
A. E.
Likhtman
,
J. Chem. Phys.
126
,
244904
(
2007
).
10.
M.
Kröger
,
C.
Laup
, and
R.
Muller
,
Macromolecules
30
,
526
(
1997
).
11.
R. C.
Picu
,
G.
Loriot
, and
J. H.
Weiner
,
J. Chem. Phys.
110
,
4678
(
1999
).
12.
A.
Likhtman
,
J. Non-Newtonian Fluid Mech.
157
,
158
(
2009
).
13.
C. F.
Curtiss
,
J. Chem. Phys.
95
,
1345
(
1991
).
14.
D. M.
Sussman
and
K. S.
Schweizer
,
Phys. Rev. Lett.
107
,
078102
(
2011
).
15.
D. M.
Sussman
and
K. S.
Schweizer
,
Phys. Rev. Lett.
109
,
168306
(
2012
).
16.
K. S.
Schweizer
,
M.
Fuchs
,
G.
Szamel
,
M.
Guenza
, and
H.
Tang
,
Macromol. Theory Simul.
6
,
1037
(
1997
).
18.
G.
Szamel
and
K. S.
Schweizer
,
J. Chem. Phys.
100
,
3127
(
1994
).
19.
R.
Everaers
,
S. K.
Sukumaran
,
G. S.
Grest
,
C.
Svaneborg
,
A.
Sivasubramanian
, and
K.
Kremer
,
Science
303
,
823
(
2004
).
20.
Q.
Zhou
and
R. G.
Larson
,
Macromolecules
39
,
6737
(
2006
).
21.
S. D.
Anogiannakis
,
C.
Tzoumanekas
, and
D. N.
Theodorou
,
Macromolecules
45
,
9475
(
2012
).
22.
J.
Glaser
,
D.
Chakraborty
,
K.
Kroy
,
I.
Lauter
,
M.
Degawa
,
N.
Kirchgeßner
,
B.
Hoffmann
,
R.
Merkel
, and
M.
Giesen
,
Phys. Rev. Lett.
105
,
037801
(
2010
).
23.
J.
Glaser
and
K.
Kroy
,
Phys. Rev. E
84
,
051801
(
2011
).
24.
D. M.
Sussman
and
K. S.
Schweizer
,
Phys. Rev. E
83
,
061501
(
2011
).
25.
D. M.
Sussman
and
K. S.
Schweizer
,
Macromolecules
45
,
3270
(
2012
).
26.
L. J.
Fetters
,
D. J.
Lohse
,
D.
Richter
,
T. A.
Witten
, and
A.
Zirkel
,
Macromolecules
27
,
4639
(
1994
).
27.
Y.-H.
Lin
,
Macromolecules
20
,
3080
(
1987
).
28.
T. A.
Kavassalis
and
J.
Noolandi
,
Phys. Rev. Lett.
59
,
2674
(
1987
).
29.
R.
Everaers
,
Phys. Rev. E
86
,
022801
(
2012
).
30.
M.
Fixman
, “
Polymer melt stress relaxation I. Homogeneous systems
” (unpublished).
31.
G.
Marrucci
and
G.
Ianniruberto
,
J. Non-Newtonian Fluid Mech.
82
,
275
(
1999
).
32.
Y.
Lu
,
L.
An
,
S.-Q.
Wang
, and
Z.-G.
Wang
,
ACS Macro Lett.
2
,
561
(
2013
).
33.
S. T.
Milner
,
Macromolecules
38
,
4929
(
2005
).
34.
R. H.
Colby
and
M.
Rubinstein
,
Macromolecules
23
,
2753
(
1990
).
35.
P. G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
Ithaca, NY
,
1979
).
36.
C.
Tzoumanekas
and
D. N.
Theodorou
,
Macromolecules
39
,
4592
(
2006
).
37.
D. M.
Nair
and
J. D.
Schieber
,
Macromolecules
39
,
3386
(
2006
).
38.
R. N.
Khaliullin
and
J. D.
Schieber
,
Phys. Rev. Lett.
100
,
188302
(
2008
).
39.
R.
Larson
,
J. Rheol.
41
,
365
, (
1997
).
40.
D. M.
Sussman
and
K. S.
Schweizer
,
Macromolecules
46
,
5684
(
2013
).
41.
T. R.
Kirkpatrick
and
P. G.
Wolynes
,
Phys. Rev. A
35
,
3072
(
1987
).
42.
K. S.
Schweizer
,
J. Chem. Phys.
123
,
244501
(
2005
).
43.
J. T.
Padding
and
W. J.
Briels
,
J. Phys.: Condens. Matter
23
,
233101
(
2011
).
44.
T. D.
Hahn
,
E. T.
Ryan
, and
J.
Kovac
,
Macromolecules
24
,
1205
(
1991
).
45.
K. S.
Schweizer
and
E. J.
Saltzman
,
J. Chem. Phys.
119
,
1181
(
2003
).
46.
W.
Götze
,
Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory
(
Oxford University Press
,
2009
).
47.
K. S.
Schweizer
and
G.
Yatsenko
,
J. Chem. Phys.
127
,
164505
(
2007
).
48.
I. C.
Carpen
and
J. F.
Brady
,
J. Rheol.
49
,
1483
(
2005
).
You do not currently have access to this content.