We investigate the structural properties of a simple model for tetrahedral patchy colloids in which the patch width and the patch range can be tuned independently. For wide bond angles, a fully bonded network can be generated by standard Monte Carlo or molecular dynamics simulations of the model, providing a good method for generating defect-free random tetrahedral networks. This offers the possibility of focusing on the role of the patch angular width on the structure of the fully bonded network. The analysis of the fully bonded configurations as a function of the bonding angle shows how the bonding angle controls the system compressibility, the strength of the pre-peak in the structure factor, and ring size distribution. Comparison with models of liquid water and silica allows us to find the best mapping between these continuous potentials and the colloidal one. Building on previous studies focused on the connection between angular range and crystallization, the mapping makes it possible to shed new light on the glass-forming ability of network-forming tetrahedral liquids.

1.
K.
Binder
and
W.
Kob
,
Glassy Materials And Disordered Solids: An Introduction to Their Statistical Mechanics
(
World Scientific Publishing Company
,
2005
).
2.
A. B.
Pawar
and
I.
Kretzschmar
,
Macromol. Rapid Commun.
31
,
150
(
2010
).
3.
E.
Bianchi
,
R.
Blaak
, and
C. N.
Likos
,
Phys. Chem. Chem. Phys.
13
,
6397
(
2011
).
4.
Y.
Wang
,
Y.
Wang
,
D. R.
Breed
,
V. N.
Manoharan
,
L.
Feng
,
A. D.
Hollingsworth
,
M.
Weck
, and
D. J.
Pine
,
Nature (London)
491
,
51
(
2012
).
5.
S.
Biffi
,
R.
Cerbino
,
F.
Bomboi
,
E. M.
Paraboschi
,
R.
Asselta
,
F.
Sciortino
, and
T.
Bellini
,
Proc. Natl. Acad. Sci. U.S.A.
110
,
15633
(
2013
).
6.
Q.
Chen
,
S. C.
Bae
, and
S.
Granick
,
Nature (London)
469
,
381
(
2011
).
7.
L.
Vlcek
and
I.
Nezbeda
,
Mol. Phys.
102
,
771
(
2004
).
9.
J.
Kolafa
and
I.
Nezbeda
,
Mol. Phys.
61
,
161
(
1987
).
10.
N.
Kern
and
D.
Frenkel
,
J. Chem. Phys.
118
,
9882
(
2003
).
12.
F.
Romano
,
E.
Sanz
, and
F.
Sciortino
,
J. Chem. Phys.
132
,
184501
(
2010
).
13.
F.
Romano
,
E.
Sanz
, and
F.
Sciortino
,
J. Chem. Phys.
134
,
174502
(
2011
).
14.
I.
Saika-Voivod
,
F.
Romano
, and
F.
Sciortino
,
J. Chem. Phys.
135
,
124506
(
2011
).
15.
F.
Smallenburg
and
F.
Sciortino
,
Nat. Phys.
9
,
554
(
2013
).
16.
B. W. H.
van Beest
,
G. J.
Kramer
, and
R. A.
van Santen
,
Phys. Rev. Lett.
64
,
1955
(
1990
).
17.
F. H.
Stillinger
and
A.
Rahman
,
J. Chem. Phys.
60
,
1545
(
1974
).
18.
J. L. F.
Abascal
and
C.
Vega
,
J. Chem. Phys.
123
,
234505
(
2005
).
19.
V.
Molinero
and
E. B.
Moore
,
J. Phys. Chem. B
113
,
4008
(
2009
).
20.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. B
31
,
5262
(
1985
).
21.
C.
De Michele
,
S.
Gabrielli
,
P.
Tartaglia
, and
F.
Sciortino
,
J. Phys. Chem. B
110
,
8064
(
2006
).
22.
W. H.
Zachariasen
,
J. Am. Chem. Soc.
54
,
3841
(
1932
).
23.
D. L.
Evans
and
S. V.
King
,
Nature (London)
212
,
1353
(
1966
).
24.
R. J.
Bell
and
P.
Dean
,
Nature
212
,
1354
(
1966
).
25.
M. G.
Sceats
,
M.
Stavola
, and
S. A.
Rice
,
J. Chem. Phys.
70
,
3927
(
1979
).
26.
S. A.
Rice
and
M. G.
Sceats
,
J. Chem. Phys.
85
,
1108
(
1981
).
27.
A. R.
Henn
and
W.
Kauzmann
,
J. Phys. Chem.
93
,
3770
(
1989
).
28.
D. E.
Polk
and
D. S.
Boudreaux
,
Phys. Rev. Lett.
31
,
92
(
1973
).
29.
V.
Molinero
,
S.
Sastry
, and
C. A.
Angell
,
Phys. Rev. Lett.
97
,
075701
(
2006
).
30.
F.
Wooten
,
K.
Winer
, and
D.
Weaire
,
Phys. Rev. Lett.
54
,
1392
(
1985
).
31.
G. T.
Barkema
and
N.
Mousseau
,
Phys. Rev. B
62
,
4985
(
2000
).
32.
N.
Mousseau
and
G. T.
Barkema
,
J. Phys.: Condens. Matter
16
,
S5183
(
2004
).
33.
F. H.
Stillinger
,
J. Chem. Phys.
88
,
7818
(
1988
).
35.
F.
Sciortino
,
J. Stat. Mech.
2005
,
P05015
.
36.
J.
Horbach
and
W.
Kob
,
Phys. Rev. B
60
,
3169
(
1999
).
37.
I.
Saika-Voivod
,
F.
Sciortino
, and
P. H.
Poole
,
Phys. Rev. E
69
,
041503
(
2004
).
38.
I.
Saika-Voivod
,
F.
Sciortino
,
T.
Grande
, and
P. H.
Poole
,
Philos. Trans. R. Soc. London, Ser. A
363
,
525
(
2005
).
39.
H. J. C.
Berendsen
,
D.
van der Spoel
, and
R.
van Druren
,
Comput. Phys. Commun.
91
,
43
(
1995
).
40.
E.
Lindahl
,
B.
Hess
, and
D.
van der Spoel
,
J. Mol. Model.
7
,
306
(
2001
).
41.
D.
van der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
,
J. Comput. Chem.
26
,
1701
(
2005
).
42.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
(
2008
).
43.
J. L. F.
Abascal
and
C.
Vega
,
J. Chem. Phys.
133
,
234502
(
2010
).
44.
F.
Sciortino
,
I.
Saika-Voivod
, and
P. H.
Poole
,
Phys. Chem. Chem. Phys.
13
,
19759
(
2011
).
45.
V. V.
Vasisht
,
S.
Saw
, and
S.
Sastry
,
Nat. Phys.
7
,
549
(
2011
).
46.
X.
Yuan
and
A. N.
Cormack
,
Comput. Mater. Sci.
24
,
343
(
2002
).
47.
S. R.
Elliott
,
Nature (London)
354
,
445
(
1991
).
48.
R.
Xie
,
G. G.
Long
,
S. J.
Weigand
,
S. C.
Moss
,
T.
Carvalho
,
S.
Roorda
,
M.
Hejna
,
S.
Torquato
, and
P. J.
Steinhardt
,
Proc. Natl. Acad. Sci. U.S.A.
110
,
13250
(
2013
).
49.
A. M. R.
de Graff
and
M. F.
Thorpe
,
Acta Crystallogr. A
66
,
22
(
2010
).
50.
C.
De Michele
,
P.
Tartaglia
, and
F.
Sciortino
,
J. Chem. Phys.
125
,
204710
(
2006
).
51.
X.
Yuan
and
A. N.
Cormack
,
J. Non-Cryst. Solids
319
,
31
(
2003
).
52.
P. H.
Poole
,
S. R.
Becker
,
F.
Sciortino
, and
F. W.
Starr
,
J. Phys. Chem. B
115
,
14176
(
2011
).
53.
A.
Rahman
and
F. H.
Stillinger
,
J. Chem. Phys.
57
,
4009
(
1972
).
54.
V.
Buch
,
P.
Sandler
, and
J.
Sadlej
,
J. Phys. Chem. B
102
,
8641
(
1998
).
55.
M. S.
Shell
,
P. G.
Debenedetti
, and
A. Z.
Panagiotopoulos
,
Phys. Rev. E
66
,
011202
(
2002
).
56.
M. H.
Ford
,
S. M.
Auerbach
, and
P. A.
Monson
,
J. Chem. Phys.
121
,
8415
(
2004
).
57.
E.
Bianchi
,
P.
Tartaglia
, and
F.
Sciortino
,
J. Chem. Phys.
129
,
224904
(
2008
).
58.
I.
Saika-Voivod
,
H. M.
King
,
P.
Tartaglia
,
F.
Sciortino
, and
E.
Zaccarelli
,
J. Phys.: Condens. Matter
23
,
285101
(
2011
).
59.
F.
Sciortino
,
Eur. Phys. J. B
64
,
505
(
2008
).
60.
Y.
Li
,
Y. D.
Tseng
,
S. Y.
Kwon
,
L.
d'Espaux
,
J. S.
Bunch
,
P. L.
McEuen
, and
D.
Luo
,
Nature Mater.
3
,
38
(
2004
).
61.
D.
Montarnal
,
M.
Capelot
,
F.
Tournilhac
, and
L.
Leibler
,
Science
334
,
965
(
2011
).
62.
G.
Zhang
,
D.
Wang
, and
H.
Möhwald
,
Angew. Chem., Int. Ed.
44
,
7767
(
2005
).
You do not currently have access to this content.