One of the major challenges in the development of coarse grained (CG) simulation models that aim at biomolecular structure formation processes is the correct representation of an environment-driven conformational change, for example, a folding/unfolding event upon interaction with an interface or upon aggregation. In the present study, we investigate this transferability challenge for a CG model using the example of diphenylalanine. This dipeptide displays a transition from a trans-like to a cis-like conformation upon aggregation as well as upon transfer from bulk water to the cyclohexane/water interface. Here, we show that one can construct a single CG model that can reproduce both the bulk and interface conformational behavior and the segregation between hydrophobic/hydrophilic medium. While the general strategy to obtain nonbonded interactions in the present CG model is to reproduce solvation free energies of small molecules representing the CG beads in the respective solvents, the success of the model strongly depends on nontrivial decisions one has to make to capture the delicate balance between the bonded and nonbonded interactions. In particular, we found that the peptide's conformational behavior is qualitatively affected by the cyclohexane/water interaction potential, an interaction that does not directly involve the peptide at all but merely influences the properties of the hydrophobic/hydrophilic interface. Furthermore, we show that a small modification to improve the structural/conformational properties of the CG model could dramatically alter the thermodynamic properties.

1.
M.
Gustafsson
,
G.
Vandenbussche
,
T.
Curstedt
,
J.
Ruysschaert
, and
J.
Johansson
,
FEBS Lett.
384
(
2
),
185
(
1996
).
2.
W.
DeGrado
,
H.
Gratkowski
, and
J.
Lear
,
Protein Sci.
12
(
4
),
647
(
2003
).
3.
M. B.
Ulmschneider
,
J. P. F.
Doux
,
J. A.
Killian
,
J. C.
Smith
, and
J. P.
Ulmschneider
,
J. Am. Chem. Soc.
132
(
10
),
3452
(
2010
).
4.
A. L.
Boyle
and
D. N.
Woolfson
,
Chem. Soc. Rev.
40
(
8
),
4295
(
2011
).
5.
C. M.
Dobson
,
Nature (London)
426
(
6968
),
884
(
2003
).
6.
F.
Chiti
and
C. M.
Dobson
,
Annu. Rev. Biochem.
75
,
333
(
2006
).
7.
C.
Wu
and
J.-E.
Shea
,
Curr. Opin. Struct. Biol.
21
,
209
(
2011
).
8.
C.
Schladitz
,
E. P.
Vieira
,
H.
Hermel
, and
H.
Möhwald
,
Biophys. J.
77
(
6
),
3305
(
1999
).
9.
H.
Rapaport
,
Supramol. Chem.
18
(
5
),
445
(
2006
).
10.
R.
Fairman
and
K. S.
Akerfeldt
,
Curr. Opin. Struct. Biol.
15
(
4
),
453
(
2005
).
11.
K.
Rajagopal
and
J. P.
Schneider
,
Curr. Opin. Struct. Biol.
14
(
4
),
480
(
2004
).
12.
H.
Rapaport
,
H.
Grisaru
, and
T.
Silberstein
,
Adv. Funct. Mater.
18
(
19
),
2889
(
2008
).
13.
W.
Li
,
F.
Nicol
, and
F.
Szoka
,
Adv. Drug Delivery Rev.
56
(
7
),
967
(
2004
).
14.
M. C.
Branco
,
D. M.
Sigano
, and
J. P.
Schneider
,
Curr. Opin. Chem. Biol.
15
(
3
),
427
(
2011
).
17.
S.
Pronk
,
S.
Páll
,
R.
Schulz
,
P.
Larsson
,
P.
Bjelkmar
,
R.
Apostolov
,
M. R.
Shirts
,
J. C.
Smith
,
P. M.
Kasson
,
D.
van der Spoel
 et al.,
Bioinformatics
29
(
7
),
845
(
2013
).
18.
C.
Oostenbrink
,
A.
Villa
,
A. E.
Mark
, and
W. F.
van Gunsteren
,
J. Comput. Chem.
25
(
13
),
1656
(
2004
).
19.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
(
24
),
6269
(
1987
).
20.
B.
Hess
,
H.
Bekker
,
H. J. C.
Berendsen
, and
J. G. E. M.
Fraaije
,
J. Comput. Chem.
18
(
12
),
1463
(
1997
).
21.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
(
1
),
014101
(
2007
).
22.
U.
Essmann
,
L.
Perera
, and
M. T.
Berkowitz
,
J. Chem. Phys.
103
(
19
),
8577
(
1995
).
23.
V.
Rühle
and
C.
Junghans
,
Macromol. Theory Simul.
20
(
7
),
472
(
2011
).
24.
R.
Apostolov
,
H.
Berendsen
,
A.
Van Buuren
,
P.
Bjelkmar
,
R.
Van Drunen
,
A.
Feenstra
,
G.
Groenhof
,
P.
Kasson
,
P.
Larsson
 et al.,
Gromacs Manual 4.5
(
Royal Institute of Technology and Uppsala University
,
Stockholm and Uppsala, Sweden
,
2010
).
25.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
(
1
),
33
(
1996
).
26.
See supplementary material at http://dx.doi.org/10.1063/1.4848675 for simulation details.
27.
C. H.
Bennett
,
J. Comput. Phys.
22
,
245
(
1976
).
28.
D.
Wu
and
D. A.
Kofke
,
J. Chem. Phys.
123
(
8
),
084109
(
2005
).
29.
W. F.
van Gunsteren
and
H. J. C.
Berendsen
,
Mol. Simul.
1
(
3
),
173
(
1988
).
30.
H. J. C.
Berendsen
,
J. P. M.
Postma
, and
W. F.
van Gunsteren
,
J. Chem. Phys.
81
(
8
),
3684
(
1984
).
31.
G. M.
Torrie
and
J. P.
Valleau
,
Chem. Phys. Lett.
28
(
4
),
578
(
1974
).
32.
O.
Engin
,
A.
Villa
,
M.
Sayar
, and
B.
Hess
,
J. Phys. Chem. B
114
(
34
),
11093
(
2010
).
33.
S.
Kumar
,
J. M.
Rosenberg
,
D.
Bouzida
,
R. H.
Swendsen
, and
P. A.
Kollman
,
J. Comput. Chem.
13
(
8
),
1011
(
1992
).
34.
35.
O.
Bezkorovaynaya
,
A.
Lukyanov
,
K.
Kremer
, and
C.
Peter
,
J. Comput. Chem.
33
,
937
(
2012
).
36.
W.
Tschöp
,
K.
Kremer
,
J.
Batoulis
,
T.
Burger
, and
O.
Hahn
,
Acta Polym.
49
(
2–3
),
61
(
1998
).
37.
C.
Peter
and
K.
Kremer
,
Soft Matter
5
,
4357
(
2009
).
38.
O.
Engin
,
A.
Villa
,
C.
Peter
, and
M.
Sayar
,
Macromol. Theory Simul.
20
,
451
(
2011
).
39.
S. O.
Nielsen
,
C. F.
Lopez
,
G.
Srinivas
, and
M. L.
Klein
,
J. Chem. Phys.
119
,
7043
(
2003
).
40.
S. J.
Marrink
,
A. H.
deVries
, and
A. E.
Mark
,
J. Phys. Chem. B
108
,
750
(
2004
).
41.
S. J.
Marrink
,
H. J.
Risselada
,
S.
Yefimov
,
D. P.
Tieleman
, and
A. H.
de Vries
,
J. Phys. Chem. B
111
,
7812
(
2007
).
42.
B. M.
Mognetti
,
L.
Yelash
,
P.
Virnau
,
W.
Paul
,
K.
Binder
,
M.
Mueller
, and
L. G.
Macdowell
,
J. Chem. Phys.
128
,
104501
(
2008
).
43.
R.
DeVane
,
W.
Shinoda
,
P. B.
Moore
, and
M. L.
Klein
,
J. Chem. Theory Comput.
5
,
2115
(
2009
).
44.
A. P.
Lyubartsev
and
A.
Laaksonen
,
Phys. Rev. E
52
,
3730
(
1995
).
46.
D.
Reith
,
M.
Putz
, and
F.
Müller-Plathe
,
J. Comput. Chem.
24
,
1624
(
2003
).
47.
C.
Peter
,
L. Delle
Site
, and
K.
Kremer
,
Soft Matter
4
,
859
(
2008
).
48.
T.
Murtola
,
M.
Karttunen
, and
I.
Vattulainen
,
J. Chem. Phys.
131
,
055101
(
2009
).
49.
A.
Lyubartsev
,
A.
Mirzoev
,
L. J.
Chen
, and
A.
Laaksonen
,
Faraday Discuss.
144
,
43
(
2010
).
50.
A.
Savelyev
and
G. A.
Papoian
,
J. Phys. Chem. B
113
,
7785
(
2009
).
51.
G.
Megariotis
,
A.
Vyrkou
,
A.
Leygue
, and
D. N.
Theodorou
,
Ind. Eng. Chem. Res.
50
,
546
(
2011
).
52.
B.
Mukherjee
,
L. D.
Site
,
K.
Kremer
, and
C.
Peter
,
J. Phys. Chem. B
116
(
29
),
8474
(
2012
).
53.
S.
Izvekov
and
G. A.
Voth
,
J. Phys. Chem. B
109
,
2469
(
2005
).
54.
W. G.
Noid
,
J.-W.
Chu
,
G. S.
Ayton
,
V.
Krishna
,
S.
Izvekov
,
G. A.
Voth
,
A.
Das
, and
H. C.
Andersen
,
J. Chem. Phys.
128
,
244114
(
2008
).
55.
M. S.
Shell
,
J. Chem. Phys.
129
,
144108
(
2008
).
56.
M. E.
Johnson
,
T.
Head-Gordon
, and
A. A.
Louis
,
J. Chem. Phys.
126
,
144509
(
2007
).
57.
J. R.
Silbermann
,
S. H. L.
Klapp
,
M.
Schoen
,
N.
Chennamsetty
,
H.
Bock
, and
K. E.
Gubbins
,
J. Chem. Phys.
124
,
074105
(
2006
).
58.
E. C.
Allen
and
G. C.
Rutledge
,
J. Chem. Phys.
130
,
034904
(
2009
).
59.
J. W.
Mullinax
and
W. G.
Noid
,
J. Chem. Phys.
131
,
104110
(
2009
).
60.
A.
Villa
,
C.
Peter
, and
N. F. A.
van der Vegt
,
J. Chem. Theory Comput.
6
,
2434
(
2010
).
61.
S.
Izvekov
,
P. W.
Chung
, and
B. M.
Rice
,
J. Chem. Phys.
133
,
064109
(
2010
).
62.
J.-W.
Shen
,
C.
Li
,
N. F. A.
van der Vegt
, and
C.
Peter
,
J. Chem. Theory Comput.
7
,
1916
(
2011
).
63.
E.
Brini
,
V.
Marcon
, and
N. F. A.
van der Vegt
,
Phys. Chem. Chem. Phys.
13
,
10468
(
2011
).
64.
J.
Jeon
,
C. E.
Mills
, and
M. S.
Shell
,
J. Phys. Chem. B
117
(
15
),
3935
(
2013
).
65.
J. G.
Kirkwood
,
J. Chem. Phys.
3
(
5
),
300
(
1935
).
66.
V.
Molinero
and
E. B.
Moore
,
J. Phys. Chem. B
113
(
13
),
4008
(
2009
).
67.
N. V.
Buchete
,
J. E.
Straub
, and
D.
Thirumalai
,
Curr. Opin. Struct. Biol.
14
(
2
),
225
(
2004
).
68.
C.
Guo
,
Y.
Luo
,
R.
Zhou
, and
G.
Wei
,
ACS Nano
6
(
5
),
3907
(
2012
).

Supplementary Material

You do not currently have access to this content.