A recently described symmetrical windowing methodology [S. J. Cotton and W. H. Miller, J. Phys. Chem. A117, 7190 (2013)] for quasi-classical trajectory simulations is applied here to the Meyer-Miller [H.-D. Meyer and W. H. Miller, J. Chem. Phys.70, 3214 (1979)] model for the electronic degrees of freedom in electronically non-adiabatic dynamics. Results generated using this classical approach are observed to be in very good agreement with accurate quantum mechanical results for a variety of test applications, including problems where coherence effects are significant such as the challenging asymmetric spin-boson system.

1.
See, e.g.,
M.
Karplus
,
R. N.
Porter
, and
R. D.
Sharma
,
J. Chem. Phys.
43
,
3259
(
1965
).
2.
L.
Bonnet
,
J. C.
Rayez
,
Chem. Phys. Lett.
277
,
183
(
1997
);
G.
Czako
and
J. M.
Bowman
,
J. Chem. Phys.
131
,
244302
(
2009
).
[PubMed]
3.
S. J.
Cotton
and
W. H.
Miller
,
J. Phys. Chem. A
117
,
7190
(
2013
).
4.
H.-D.
Meyer
and
W. H.
Miller
,
J. Chem. Phys.
70
,
3214
(
1979
).
5.
See, e.g.,
W. H.
Miller
,
J. Phys. Chem. A
113
,
1405
(
2009
).
6.
G.
Stock
,
J. Chem. Phys.
103
,
2888
(
1995
).
7.
G.
Stock
and
M.
Thoss
,
Phys. Rev. Lett.
78
,
578
(
1997
).
8.
J. C.
Tully
,
J. Chem. Phys.
93
,
1061
(
1990
).
9.
For the single avoided crossing model, although the nuclear DOF begins on the lower surface, the transmission probability T2 ← 1 (switching from state 1 to state 2) corresponds to the nuclear DOF emerging on the lower surface because the PESs cross and reverse energies in the diabatic representation. Likewise T1 ← 1 (remaining in state 1) corresponds to the nuclear DOF emerging on the upper surface.
10.
G.
Tao
and
W. H.
Miller
,
J. Phys. Chem. Lett.
1
,
891
894
(
2010
).
11.
W. H.
Miller
,
J. Chem. Phys.
136
,
210901
(
2012
).
12.
The authors thank Professor John Tully for the QM results.
13.
See, e.g.,
X.
Sun
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
109
,
7064
(
1998
).
14.
If one uses mass-weighted coordinates, the masses in Eqs. (20a), (21), and (23) may be ignored.
15.
|$\rho ({\bm P},{\bm Q}) = \int {d{\bm\Delta }{\bm Q}e^{ - i\;{\bm P} \cdot {\bm\Delta }{\bm Q}} {\bm Q} + {\bm\Delta }{\bm Q}/2{\rm |}e^{ - \beta H_{11} ({\bm Q})} {\rm |}{\bm Q} - {\bm\Delta }{\bm Q}/2} $|ρ(P,Q)=dΔQeiP·ΔQQ+ΔQ/2|eβH11(Q)|QΔQ/2.
16.
See Fig. 5 of Ref. 13.
17.
H.
Wang
,
M.
Thoss
, and
W. H.
Miller
,
J. Chem. Phys.
115
,
2979
(
2001
); see Fig. 5.
18.
Slightly different model parameters were used here relative to Fig. 5(a) simply due to the QM results we happen to have available.
19.
See Fig. 4 or Ref. 17.
You do not currently have access to this content.