Using a one-dimensional model, we explore the ability of machine learning to approximate the non-interacting kinetic energy density functional of diatomics. This nonlinear interpolation between Kohn-Sham reference calculations can (i) accurately dissociate a diatomic, (ii) be systematically improved with increased reference data and (iii) generate accurate self-consistent densities via a projection method that avoids directions with no data. With relatively few densities, the error due to the interpolation is smaller than typical errors in standard exchange-correlation functionals.

1.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
2.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
3.
K.
Burke
, “
Perspective on density functional theory
,”
J. Chem. Phys.
136
,
150901
(
2012
).
4.
K.
Burke
and
L. O.
Wagner
, “
Dft in a nutshell
,”
Int. J. Quantum Chem.
113
,
96
101
(
2013
).
5.
R. M.
Dreizler
and
E. K. U.
Gross
,
Density Functional Theory: An Approach to the Quantum Many-Body Problem
(
Springer
,
1990
).
6.
Y. A.
Wang
and
E. A.
Carter
, “
Orbital-free kinetic-energy density functional theory
,” in
Theoretical Methods in Condensed Phase Chemistry
, edited by
S. D.
Schwartz
(
Kluwer
,
New York
,
2000
).
7.
V. V.
Karasiev
,
D.
Chakraborty
, and
S. B.
Trickey
, “
Progress on new approaches to old ideas: Orbital-free density functionals
,” in
Many-Electron Approaches in Physics, Chemistry, and Mathematics
, edited by
L.
Delle Site
and
V.
Bach
(
Springer Verlag, Kluwer
,
NY
) (to be published).
8.
V.
Karasiev
and
S. B.
Trickey
, “
Issues and challenges in orbital-free density functional calculations
,”
Comput. Phys. Commun.
183
,
2519
2527
(
2012
).
9.
V. V.
Karasiev
,
R. S.
Jones
,
S. B.
Trickey
, and
F. E.
Harris
, “
Properties of constraint-based single-point approximate kinetic energy functionals
,”
Phys. Rev. B
80
,
245120
(
2009
).
10.
V. V.
Karasiev
,
R. S.
Jones
,
S. B.
Trickey
, and
F. E.
Harris
, “
Erratum: Properties of constraint-based single-point approximate kinetic energy functionals [Phys. Rev. B 80, 245120 (2009)]
,”
Phys. Rev. B
87
,
239903
(
2013
).
11.
C. J.
Umrigar
and
X.
Gonze
, “
Accurate exchange-correlation potentials and total-energy components for the helium isoelectronic series
,”
Phys. Rev. A
50
,
3827
3837
(
1994
).
12.
M.-C.
Kim
,
E.
Sim
, and
K.
Burke
, “
Understanding and reducing errors in density functional calculations
,”
Phys. Rev. Lett.
111
,
073003
(
2013
).
13.
C. F. V.
Weizsäcker
, “
Zur theorie der kernmassen
,”
Z Phys.
96
,
431
458
(
1935
).
14.
F.
Tran
and
T. A.
Wesolowski
, “
Link between the kinetic- and exchange-energy functionals in the generalized gradient approximation
,”
Int. J. Quantum Chem.
89
,
441
446
(
2002
).
15.
E.
Chacón
,
J. E.
Alvarellos
, and
P.
Tarazona
, “
Nonlocal kinetic energy functional for nonhomogeneous electron systems
,”
Phys. Rev. B
32
,
7868
7877
(
1985
).
16.
P.
García-González
,
J. E.
Alvarellos
, and
E.
Chacón
, “
Nonlocal kinetic-energy-density functionals
,”
Phys. Rev. B
53
,
9509
9512
(
1996
).
17.
P.
García-González
,
J. E.
Alvarellos
, and
E.
Chacón
, “
Nonlocal symmetrized kinetic-energy density functional: Application to simple surfaces
,”
Phys. Rev. B
57
,
4857
4862
(
1998
).
18.
L.-W.
Wang
and
M. P.
Teter
, “
Kinetic-energy functional of the electron density
,”
Phys. Rev. B
45
,
13196
13220
(
1992
).
19.
Y. A.
Wang
,
N.
Govind
, and
E. A.
Carter
, “
Orbital-free kinetic-energy density functionals with a density-dependent kernel
,”
Phys. Rev. B
60
,
16350
16358
(
1999
).
20.
J.
Xia
,
C.
Huang
,
I.
Shin
, and
E. A.
Carter
, “
Can orbital-free density functional theory simulate molecules
?”
J. Chem. Phys.
136
,
084102
(
2012
).
21.
Y.
Ke
,
F.
Libisch
,
J.
Xia
,
L.-W.
Wang
, and
E. A.
Carter
, “
Angular-momentum-dependent orbital-free density functional theory
,”
Phys. Rev. Lett.
111
,
066402
(
2013
).
22.
C.
Huang
and
E. A.
Carter
, “
Nonlocal orbital-free kinetic energy density functional for semiconductors
,”
Phys. Rev. B
81
,
045206
(
2010
).
23.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
, “
Insights into current limitations of density functional theory
,”
Science
321
,
792
794
(
2008
).
24.
K.-R.
Müller
,
S.
Mika
,
G.
Rätsch
,
K.
Tsuda
, and
B.
Schölkopf
, “
An introduction to kernel-based learning algorithms
,”
IEEE Trans. Neural Network
12
,
181
201
(
2001
).
25.
O.
Ivanciuc
, “
Applications of support vector machines in chemistry
,” in
Reviews in Computational Chemistry
, edited by
Kenny
Lipkowitz
and
Tom
Cundari
(
Wiley
,
Hoboken
,
2007
), Vol.
23
, Chap. 6, pp.
291
400
.
26.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
, “
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
,”
Phys. Rev. Lett.
104
,
136403
(
2010
).
27.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
, “
Fast and accurate modeling of molecular atomization energies with machine learning
,”
Phys. Rev. Lett.
108
,
058301
(
2012
).
28.
M.
Rupp
,
M. R.
Bauer
,
R.
Wilcken
,
A.
Lange
,
M.
Reutlinger
,
F. M.
Boeckler
, and
G.
Schneider
, “
Machine learning estimates of natural product conformational energies
,”
PLOS Comput. Biol.
(in press).
29.
Z. D.
Pozun
,
K.
Hansen
,
D.
Sheppard
,
M.
Rupp
,
K.-R.
Müller
, and
G.
Henkelman
, “
Optimizing transition states via kernel-based machine learning
,”
J. Chem. Phys.
136
,
174101
(
2012
).
30.
G.
Montavon
,
M.
Rupp
,
V.
Gobre
,
A.
Vazquez-Mayagoitia
,
K.
Hansen
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
, “
Machine learning of molecular electronic properties in chemical compound space
,”
New J. Phys.
15
,
095003
(
2013
).
31.
J. C.
Snyder
,
M.
Rupp
,
K.
Hansen
,
K.-R.
Müller
, and
K.
Burke
, “
Finding density functionals with machine learning
,”
Phys. Rev. Lett.
108
,
253002
(
2012
).
32.
Y.
Zhao
and
D.
Truhlar
, “
The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals
,”
Theor. Chem. Acc.
120
,
215
241
(
2008
).
33.
V.
Petzold
,
T.
Bligaard
, and
K. W.
Jacobsen
, “
Construction of new electronic density functionals with error estimation through fitting
,”
Top. Catal.
55
,
402
417
(
2012
).
34.
P.
Mori-Sanchez
,
A. J.
Cohen
, and
W.
Yang
, “
Discontinuous nature of the exchange-correlation functional in strongly correlated systems
,”
Phys. Rev. Lett.
102
,
066403
(
2009
).
35.
L. O.
Wagner
,
E. M.
Stoudenmire
,
K.
Burke
, and
S. R.
White
, “
Reference electronic structure calculations in one dimension
,”
Phys. Chem. Chem. Phys.
14
,
8581
8590
(
2012
).
36.
N.
Helbig
,
J. I.
Fuks
,
M.
Casula
,
M. J.
Verstraete
,
M. A. L.
Marques
,
I. V.
Tokatly
, and
A.
Rubio
, “
Density functional theory beyond the linear regime: Validating an adiabatic local density approximation
,”
Phys. Rev. A
83
,
032503
(
2011
).
37.
J. C.
Light
and
T.
Carrington
, “
Discrete-variable representations and their utilization
,” in
Advances in Chemical Physics
(
John Wiley & Sons, Inc.
,
2007
), pp.
263
310
.
38.
R. A.
Adams
and
J. J. F.
Fournier
,
Sobolev Spaces
,
Pure and Applied Mathematics
(
Elsevier Science
,
2003
).
39.
In real calculations all densities are represented by a finite basis, and thus will have a finite L2 norm.
40.
T.
Hastie
,
R.
Tibshirani
, and
J.
Friedman
,
The Elements of Statistical Learning. Data Mining, Inference, and Prediction
, 2nd ed. (
Springer
,
New York
,
2009
).
41.
K.
Hansen
,
G.
Montavon
,
F.
Biegler
,
S.
Fazli
,
M.
Rupp
,
M.
Scheffler
,
O. A.
von Lilienfeld
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
Assessment and validation of machine learning methods for predicting molecular atomization energies
,”
J. Chem. Theory Comput.
9
,
3404
3419
(
2013
).
42.
G.
Montavon
,
M.
Braun
,
T.
Krueger
, and
K.-R.
Müller
, “
Analyzing local structure in kernel-based learning: Explanation, complexity, and reliability assessment
,”
IEEE Signal Process. Mag.
30
,
62
74
(
2013
).
43.
In situations where this is not the case (e.g., incomplete sampling of
$\protect \mathcal {M}_N$
MN
), the predictive variance could be used to detect when leaving the interpolation domain and further reference calculations could then be done to augment the training set accordingly.
44.
B.
Schölkopf
,
A.
Smola
, and
K. R.
Müller
, “
Nonlinear component analysis as a kernel eigenvalue problem
,”
Neural Comput.
10
,
1299
1319
(
1998
).
45.
J. C.
Snyder
,
M.
Rupp
,
K.
Hansen
,
K.-R.
Müller
, and
K.
Burke
, “
Accurate densities from inaccurate functional derivatives
” (unpublished).
46.
P.
Elliott
,
K.
Burke
,
M. H.
Cohen
, and
A.
Wasserman
, “
Partition density-functional theory
,”
Phys. Rev. A
82
,
024501
(
2010
).
47.
J. C.
Snyder
,
S.
Mika
,
K.
Burke
, and
K.-R.
Müller
, “
Kernels, pre-images and optimization
,” in
Empirical Inference – Festschrift in Honor of Vladimir N. Vapnik
, edited by
Bernhard
Schoelkopf
,
Zhiyuan
Luo
, and
Vladimir
Vovk
(
Springer
,
Heidelberg
) (to be published).
You do not currently have access to this content.