We employ the self-consistent field theory to study phase structures of brush-rod systems composed of two chemically distinct linear homopolymers. The polymer chains are uniformly grafted on the surface of a nanorod particle of finite length and comparable radius to the polymer radius of gyration. A “masking” technique treating the cylindrical boundary is introduced to solve the modified diffusion equations with an efficient and high-order accurate pseudospectral method involving fast Fourier transform on an orthorhombic cell. A rich variety of structures for the phase separated brushes is predicted. Phase diagrams involving a series of system parameters, such as the aspect ratio of the nanorod, the grafting density, and the chain length are constructed. The results indicate that the phase structure of the mixed brush-rod system can be tailored by varying the grafted chain length and/or the aspect ratio of the rod to benefit the fabrication of polymeric nanocomposites.

1.
2.
R. C.
Advincula
,
W. J.
Britlain
, and
K. C.
Caster
, in
Polymer Brushes
, edited by
J.
Rühe
(
Wiley-VCH
,
Weinheim
,
2004
).
3.
K.
Binder
and
A.
Milchev
,
J. Polym. Sci., Part B: Polym. Phys.
50
,
1515
(
2012
).
4.
B.
Zhao
and
W. J.
Brittain
,
Prog. Polym. Sci.
25
,
677
(
2000
).
5.
B.
Zhao
and
L.
Zhu
,
Macromolecules
42
,
9369
(
2009
).
6.
E.
Zhulina
and
A. C.
Balazs
,
Macromolecules
29
,
2667
(
1996
).
7.
S.
Minko
,
M.
Müller
,
D.
Usov
,
A.
Scholl
,
C.
Froeck
, and
M.
Stamm
,
Phys. Rev. Lett.
88
,
035502
(
2002
).
8.
A.
Sidorenko
,
S.
Minko
,
K.
Schenk-Meuser
,
H.
Duschner
, and
M.
Stamm
,
Langmuir
15
,
8349
(
1999
).
9.
B.
Zhao
,
R. T.
Haasch
, and
S.
MacLaren
,
J. Am. Chem. Soc.
126
,
6124
(
2004
).
10.
L.
Zhu
and
B.
Zhao
,
J. Phys. Chem. B
112
,
11529
(
2008
).
11.
J.-R.
Roan
,
Int. J. Mod. Phys. B
18
,
2469
(
2004
).
12.
13.
Y. Q.
Wang
,
G. A.
Yang
,
P.
Tang
,
F.
Qiu
,
Y. L.
Yang
, and
L.
Zhu
,
J. Chem. Phys.
134
,
134903
(
2011
).
14.
E. B.
Zhulina
,
C.
Singh
, and
A. C.
Balazs
,
Macromolecules
29
,
6338
(
1996
).
15.
C.
Singh
,
Y.
Hu
,
B. P.
Khanal
,
E. R.
Zubarev
,
F.
Stellacci
, and
S. C.
Glotzer
,
Nanoscale
3
,
3244
(
2011
).
16.
C.
Singh
,
A. M.
Jackson
,
F.
Stellacci
, and
S. C.
Glotzer
,
J. Am. Chem. Soc.
131
,
16377
(
2009
).
17.
S. A.
Egorov
,
Soft Matter
8
,
3971
(
2012
).
18.
J. F.
Marko
and
T. A.
Witten
,
Phys. Rev. Lett.
66
,
1541
(
1991
).
19.
J. F.
Marko
and
T. A.
Witten
,
Macromolecules
25
,
296
(
1992
).
20.
B.
Zhao
and
W. J.
Brittain
,
Macromolecules
33
,
8813
(
2000
).
21.
J. M.
Horton
,
S. D.
Tang
,
C. H.
Bao
,
P.
Tang
,
F.
Qiu
,
L.
Zhu
, and
B.
Zhao
,
ACS Macro Lett.
1
,
1061
(
2012
).
22.
B.
Zhao
and
T.
He
,
Macromolecules
36
,
8599
(
2003
).
23.
S. A.
Egorov
,
J. Chem. Phys.
129
,
064901
(
2008
).
24.
D.
Meng
and
Q.
Wang
,
J. Chem. Phys.
130
,
134904
(
2009
).
25.
M.
Müller
,
Phys. Rev. E
65
,
030802
(
2002
).
26.
S. A.
Egorov
,
J. Chem. Phys.
137
,
134905
(
2012
).
27.
J. U.
Kim
and
M. W.
Matsen
,
Macromolecules
41
,
4435
(
2008
).
28.
B.
Zhao
and
L.
Zhu
,
J. Am. Chem. Soc.
128
,
4574
(
2006
).
29.
M. J.
Mulvihill
,
B. L.
Rupert
,
R.
He
,
A.
Hochbaum
,
J.
Arnold
, and
P.
Yang
,
J. Am. Chem. Soc.
127
,
16040
(
2005
).
30.
H. P.
Hsu
,
W.
Paul
, and
K.
Binder
,
Macromol. Theory Simul.
16
,
660
(
2007
).
31.
32.
M.
Daoud
and
J. P.
Coton
,
J. Phys. (Paris)
43
,
531
(
1982
).
33.
D. I.
Dimitrov
,
A.
Milchev
, and
K.
Binder
,
J. Chem. Phys.
127
,
084905
(
2007
).
34.
J. F.
Li
,
J.
Fan
,
H. D.
Zhang
,
F.
Qiu
,
P.
Tang
, and
Y. L.
Yang
,
Eur. Phys. J. E
20
,
449
(
2006
).
35.
G.
Yang
,
P.
Tang
,
Y. L.
Yang
, and
J. T.
Cabral
,
J. Phys. Chem. B
113
,
14052
(
2009
).
36.
M. W.
Matsen
and
M.
Schick
,
Phys. Rev. Lett.
72
,
2660
(
1994
).
37.
F.
Drolet
and
G. H.
Fredrickson
,
Phys. Rev. Lett.
83
,
4317
(
1999
).
38.
Z.
Guo
,
G.
Zhang
,
F.
Qiu
,
H.
Zhang
,
Y.
Yang
, and
A.-C.
Shi
,
Phys. Rev. Lett.
101
,
028301
(
2008
).
39.
Q.
Wang
,
T.
Taniguchi
, and
G. H.
Fredrickson
,
J. Phys. Chem. B
108
,
6733
(
2004
).
40.
V.
Khanna
,
E. W.
Cochran
,
A.
Hexemer
,
G. E.
Stein
,
G. H.
Fredrickson
,
E. J.
Kramer
,
X.
Li
,
J.
Wang
, and
S. F.
Hahn
,
Macromolecules
39
,
9346
(
2006
).
41.
G.
Tzeremes
,
K. Ø.
Rasmussen
,
T.
Lookman
, and
A.
Saxena
,
Phys. Rev. E
65
,
041806
(
2002
).
42.
A.
Bueno-Orovio
,
V. M.
Pérez-García
, and
F. H.
Fenton
,
SIAM J. Sci. Comput.
28
,
886
(
2006
).
43.
D.
Dukes
,
Y.
Li
,
S.
Lewis
,
B.
Benicewicz
,
L.
Schadler
, and
S. K.
Kumar
,
Macromolecules
43
,
1564
(
2010
).
44.
X. M.
Jiang
,
G. J.
Zhong
,
J. M.
Horton
,
N. X.
Jin
,
L.
Zhu
, and
B.
Zhao
,
Macromolecules
43
,
5387
(
2010
).
45.
X. M.
Jiang
,
B.
Zhao
,
G. J.
Zhong
,
N. X.
Jin
,
J. M.
Horton
,
L.
Zhu
,
R. S.
Hafner
, and
T. P.
Lodge
,
Macromolecules
43
,
8209
(
2010
).
46.
C. H.
Bao
,
S. D.
Tang
,
J. M.
Horton
,
X. M.
Jiang
,
P.
Tang
,
F.
Qiu
,
L.
Zhu
, and
B.
Zhao
,
Macromolecules
45
,
8027
(
2012
).
You do not currently have access to this content.