A dynamically biased (d-) precursor mediated microcanonical trapping (PMMT) model of the activated dissociative chemisorption of methane on Pt(111) is applied to a wide range of dissociative sticking experiments, and, by detailed balance, to the methane product state distributions from the thermal associative desorption of adsorbed hydrogen with coadsorbed methyl radicals. Tunneling pathways were incorporated into the d-PMMT model to better replicate the translational energy distribution of the desorbing methane product from the laser induced thermal reaction of coadsorbed hydrogen and methyl radicals occurring near Ts = 395 K. Although tunneling is predicted to be inconsequential to the thermal dissociative chemisorption of CH4 on Pt(111) at the high temperatures of catalytic interest, once the temperature drops to 395 K the tunneling fraction of the reactive thermal flux reaches 15%, and as temperatures drop below 275 K the tunneling fraction exceeds 50%. The d-PMMT model parameters of {E0 = 58.9 kJ/mol, s = 2, ηv = 0.40} describe the apparent threshold energy for CH4/Pt(111) dissociative chemisorption, the number of surface oscillators involved in the precursor complex, and the efficacy of molecular vibrational energy to promote reaction, relative to translational energy directed along the surface normal. Molecular translations parallel to the surface and rotations are treated as spectator degrees of freedom. Transition state vibrational frequencies are derived from generalized gradient approximation-density functional theory electronic structure calculations. The d-PMMT model replicates the diverse range of experimental data available with good fidelity, including some new effusive molecular beam and ambient gas dissociative sticking measurements. Nevertheless, there are some indications that closer agreement between theory and experiments could be achieved if a surface efficacy less than one was introduced into the modeling as an additional dynamical constraint.

1.
J. M.
Wei
and
E.
Iglesia
,
J. Catal.
224
,
370
(
2004
).
2.
J. M.
Wei
and
E.
Iglesia
,
J. Phys. Chem. B
108
,
4094
(
2004
).
3.
J. G.
Jakobsen
,
T. L.
Jorgensen
,
I.
Chorkendorff
, and
J.
Sehested
,
Appl. Catal., A
377
,
158
(
2010
).
4.
J. G.
Jakobsen
,
M.
Jakobsen
,
I.
Chorkendorff
, and
J.
Sehested
,
Catal. Lett.
140
,
90
(
2010
).
5.
G.
Jones
,
J. G.
Jakobsen
,
S. S.
Shim
,
J.
Kleis
,
M. P.
Andersson
,
J.
Rossmeisl
,
F.
Abild-Pedersen
,
T.
Bligaard
,
S.
Helveg
,
B.
Hinnemann
,
J. R.
Rostrup-Nielsen
,
I.
Chorkendorff
,
J.
Sehested
, and
J. K.
Norskov
,
J. Catal.
259
,
147
(
2008
).
6.
C. N.
Stewart
and
G.
Ehrlich
,
J. Chem. Phys.
62
,
4672
(
1975
).
7.
C. T.
Rettner
,
H. E.
Pfnur
, and
D. J.
Auerbach
,
Phys. Rev. Lett.
54
,
2716
(
1985
).
8.
M. B.
Lee
,
Q. Y.
Yang
,
S. L.
Tang
, and
S. T.
Ceyer
,
J. Chem. Phys.
85
,
1693
(
1986
).
9.
G. R.
Schoofs
,
C. R.
Arumainayagam
,
M. C.
Mcmaster
, and
R. J.
Madix
,
Surf. Sci.
215
,
1
(
1989
).
10.
J.
Harris
,
J.
Simon
,
A. C.
Luntz
,
C. B.
Mullins
, and
C. T.
Rettner
,
Phys. Rev. Lett.
67
,
652
(
1991
).
11.
V. A.
Ukraintsev
and
I.
Harrison
,
J. Chem. Phys.
101
,
1564
(
1994
).
12.
J. H.
Larsen
and
I.
Chorkendorff
,
Surf. Sci. Rep.
35
,
163
(
1999
).
13.
A.
Bukoski
,
D.
Blumling
, and
I.
Harrison
,
J. Chem. Phys.
118
,
843
(
2003
).
14.
L. B. F.
Juurlink
,
D. R.
Killelea
, and
A. L.
Utz
,
Prog. Surf. Sci.
84
,
69
(
2009
).
15.
B.
Jackson
and
S.
Nave
,
J. Chem. Phys.
135
,
114701
(
2011
).
16.
B.
Jackson
and
S.
Nave
,
J. Chem. Phys.
138
,
174705
(
2013
).
17.
L. B. F.
Juurlink
,
P. R.
McCabe
,
R. R.
Smith
,
C. L.
DiCologero
, and
A. L.
Utz
,
Phys. Rev. Lett.
83
,
868
(
1999
).
18.
M. P.
Schmid
,
P.
Maroni
,
R. D.
Beck
, and
T. R.
Rizzo
,
J. Chem. Phys.
117
,
8603
(
2002
).
19.
S. B.
Donald
and
I.
Harrison
,
Phys. Chem. Chem. Phys.
14
,
1784
(
2012
).
20.
A. P. J.
Jansen
, and
H.
Burghgraef
,
Surf. Sci.
344
,
149
(
1995
).
21.
M. N.
Carré
and
B.
Jackson
,
J. Chem. Phys.
108
,
3722
(
1998
).
22.
Y.
Xiang
,
J. Z. H.
Zhang
, and
D. Y.
Wang
,
J. Chem. Phys.
117
,
7698
(
2002
).
23.
G. P.
Krishnamohan
,
R. A.
Olsen
,
G. J.
Kroes
,
F.
Gatti
, and
S.
Woittequand
,
J. Chem. Phys.
133
,
144308
(
2010
).
24.
B.
Jiang
and
H.
Guo
,
J. Phys. Chem. C
117
,
16127
(
2013
).
25.
J. K.
Navin
,
S. B.
Donald
,
D. G.
Tinney
,
G. W.
Cushing
, and
I.
Harrison
,
J. Chem. Phys.
136
,
061101
(
2012
).
26.
G. W.
Cushing
,
J. K.
Navin
,
L.
Valadez
,
V.
Johánek
, and
I.
Harrison
,
Rev. Sci. Instrum.
82
,
044102
(
2011
).
27.
A. C.
Luntz
and
D. S.
Bethune
,
J. Chem. Phys.
90
,
1274
(
1989
).
28.
W. H.
Miller
,
J. Am. Chem. Soc.
101
,
6810
(
1979
).
29.
V. A.
Ukraintsev
and
I.
Harrison
,
Surf. Sci.
286
,
L571
(
1993
).
30.
K.
Watanabe
,
M. C.
Lin
,
Y. A.
Gruzdkov
, and
Y.
Matsumoto
,
J. Chem. Phys.
104
,
5974
(
1996
).
31.
K. G.
Prasanna
,
R. A.
Olsen
,
A.
Valdes
, and
G. J.
Kroes
,
Phys. Chem. Chem. Phys.
12
,
7654
(
2010
).
32.
M.
Sacchi
,
D. J.
Wales
, and
S. J.
Jenkins
,
J. Phys. Chem. C
115
,
21832
(
2011
).
33.
A. K.
Tiwari
,
S.
Nave
, and
B.
Jackson
,
J. Chem. Phys.
132
,
134702
(
2010
).
34.
B.
Jiang
,
R.
Liu
,
J.
Li
,
D. Q.
Xie
,
M. H.
Yang
, and
H.
Guo
,
Chem. Sci.
4
,
3249
(
2013
).
35.
H. L.
Abbott
,
A.
Bukoski
, and
I.
Harrison
,
J. Chem. Phys.
121
,
3792
(
2004
).
36.
A.
Bukoski
,
H. L.
Abbott
, and
I.
Harrison
,
J. Chem. Phys.
123
,
094707
(
2005
).
37.
D. L.
Bunker
and
W. L.
Hase
,
J. Chem. Phys.
59
,
4621
(
1973
).
38.
S. H. P.
Bly
,
L. W.
Dickson
,
Y.
Nomura
,
J. C.
Polanyi
,
I. W. M.
Smith
,
P. N.
Clough
,
M.
Kneba
,
U.
Wellhausen
,
J.
Wolfrum
,
P. E.
Siska
,
R. J.
Wolf
,
C. S.
Sloane
,
W. L.
Hase
,
L.
Holmlid
,
K.
Rynefors
,
K.
Luther
,
M.
Quack
,
K.
Freed
,
W. M.
Jackson
,
R.
Naaman
,
R. N.
Zare
,
G.
Hancock
,
R.
Walsh
,
J.
Troe
,
D. M.
Lubman
,
G.
Atkinson
,
D. W.
Setser
,
M. R.
Levy
,
M.
Mangir
,
H.
Reisler
,
M. H.
Yu
,
C.
Wittig
,
C. M.
Miller
,
F. M. G.
Tablas
,
M. N. R.
Ashfold
,
A. J.
Roberts
,
I.
Veltman
,
A.
Durkin
,
D. J.
Smith
,
R.
Grice
,
D. R.
Herschbach
,
G. M.
McClelland
, and
K. L.
Kompa
,
Faraday Discuss.
67
,
221
254
(
1979
).
39.
S.
Nave
,
A. K.
Tiwari
, and
B.
Jackson
,
J. Chem. Phys.
132
,
054705
(
2010
).
40.
W.
Forst
,
Unimolecular Reactions: A Concise Introduction
, 1st ed. (
Cambridge University Press
,
Cambridge, UK
,
2003
).
41.
T.
Baer
, and
W. L.
Hase
,
Unimolecular Reaction Dynamics
(
Oxford University Press
,
New York, NY
,
1996
).
42.
H. S.
Johnston
and
J.
Heicklen
,
J. Phys. Chem.
66
,
532
(
1962
).
43.
J. A.
Booze
,
K. M.
Weitzel
, and
T.
Baer
,
J. Chem. Phys.
94
,
3649
(
1991
).
45.
G.
Kresse
and
J.
Furthmuller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
46.
G.
Kresse
and
J.
Furthmuller
,
Phys. Rev. B
54
,
11169
(
1996
).
47.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
48.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
49.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
50.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
51.
P. E.
Blochl
,
Phys. Rev. B
50
,
17953
(
1994
).
52.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
53.
G.
Henkelman
and
H.
Jonsson
,
J. Chem. Phys.
111
,
7010
(
1999
).
54.
MedeA 2.8, Materials Design Inc., Angel Fire, NM, 2012.
55.
G. W.
Cushing
,
J. K.
Navin
,
S. B.
Donald
,
L.
Valadez
,
V.
Johanek
, and
I.
Harrison
,
J. Phys. Chem. C
114
,
17222
(
2010
).
56.
G. W.
Cushing
,
J. K.
Navin
,
S. B.
Donald
,
L.
Valadez
,
V.
Johánek
, and
I.
Harrison
,
J. Phys. Chem. C
114
,
22790
(
2010
).
57.
R.
Bisson
,
M.
Sacchi
,
T. T.
Dang
,
B.
Yoder
,
P.
Maroni
, and
R. D.
Beck
,
J. Phys. Chem. A
111
,
12679
(
2007
).
58.
M. P.
Schmid
,
P.
Maroni
,
R. D.
Beck
, and
T. R.
Rizzo
,
Rev. Sci. Instrum.
74
,
4110
(
2003
).
59.
B. A.
Waite
and
W. H.
Miller
,
J. Chem. Phys.
73
,
3713
(
1980
).
60.
W. H.
Miller
,
Chem. Rev.
87
,
19
(
1987
).
61.
H.
Mortensen
,
L.
Diekhoner
,
A.
Baurichter
, and
A. C.
Luntz
,
J. Chem. Phys.
116
,
5781
(
2002
).
62.
E. M.
Karp
,
T. L.
Silbaugh
, and
C. T.
Campbell
,
J. Phys. Chem. C
117
,
6325
(
2013
).
63.
M. J.
Murphy
and
A.
Hodgson
,
J. Chem. Phys.
108
,
4199
(
1998
).
64.
65.
K. M.
DeWitt
,
L.
Valadez
,
H. L.
Abbott
,
K. W.
Kolasinski
, and
I.
Harrison
,
J. Phys. Chem. B
110
,
6705
(
2006
).
66.
R.
Zhang
,
L.
Song
, and
Y.
Wang
,
Appl. Surf. Sci.
258
,
7154
(
2012
).
67.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
68.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
).
69.
K.
Yang
,
J. J.
Zheng
,
Y.
Zhao
, and
D. G.
Truhlar
,
J. Chem. Phys.
132
,
164117
(
2010
).
70.
E. M.
Karp
,
T. L.
Silbaugh
, and
C. T.
Campbell
,
J. Am. Chem. Soc.
135
,
5208
(
2013
).
71.
K. J.
Laidler
,
Chemical Kinetics
, 3rd ed. (
Harper and Row
,
New York
,
1987
).
72.
C. T.
Rettner
,
H. A.
Michelsen
, and
D. J.
Auerbach
,
Faraday Discuss.
96
,
17
(
1993
).
73.
See supplementary material at http://dx.doi.org/10.1063/1.4837697 for (i) a theoretical simulation of the CD4 product translational energy distribution for the laser induced thermal reaction CD3(c) + D(c) → CD4(g) on Pt(111) using a d-PMMT model without incorporation of tunneling pathways,19 and (ii) a table of GGA-DFT calculated transition state vibrational frequencies for the dissociative chemisorption of CH4 and CD4 on Pt(111) and a list of experimental vibrational frequencies for gas-phase methane that were used in the d-PMMT calculations.

Supplementary Material

You do not currently have access to this content.