In the course of the recent advances in chemical structure prediction, a straightforward type of diagram to evaluate phase stabilities is presented based on an expedient example. Crystal structures and energetic stabilities of dipnictides NiPn2 (Pn = N, P, As, Sb, Bi) are systematically investigated by first principles calculations within the framework of density functional theory using the generalized gradient approximation to treat exchange and correlation. These dipnictides show remarkable polymorphism that is not yet understood systematically and offers room for the discovery of new phases. Relationships between the concerned structures including the marcasite, the pyrite, the arsenopyrite/CoSb2, and the NiAs2 types are highlighted by means of common structural fragments. Electronic stabilities of experimentally known and related AB2 structure types are presented graphically in so-called stability diagrams. Additionally, competing binary phases are taken into consideration in the diagrams to evaluate the stabilities of the title compounds with respect to decomposition. The main purpose of the stability diagrams is the introduction of an image that enables the estimation of phase stabilities at a single glance. Beyond that, some of the energetically favored structure types can be identified as potential new phases.

1.
G. J.
Snyder
and
E. S.
Toberer
,
Nature Mater.
7
,
105
(
2008
).
2.
T.
Nilges
,
O.
Osters
,
M.
Bawohl
,
J. L.
Bobet
,
B.
Chevalier
,
R.
Decourt
, and
R.
Weihrich
,
Chem. Mater.
22
,
2946
(
2010
).
4.
A. R.
Oganov
and
C. W.
Glass
,
J. Chem. Phys.
124
,
244704
(
2006
).
5.
R. P.
Stoffel
,
C.
Wessel
,
M. W.
Lumey
, and
R.
Dronskowski
,
Angew. Chem., Int Ed.
49
,
5242
(
2010
).
6.
M.
Wessel
and
R.
Dronskowski
,
J. Am. Chem. Soc.
132
,
2421
(
2010
).
7.
O.
Osters
,
T.
Nilges
,
F.
Bachhuber
,
F.
Pielnhofer
,
R.
Weihrich
,
M.
Schoneich
, and
P.
Schmidt
,
Angew. Chem., Int. Ed.
51
,
2994
(
2012
).
8.
X. W.
Zhang
,
L. P.
Yu
,
A.
Zakutayev
, and
A.
Zunger
,
Adv. Funct. Mater.
22
,
1425
(
2012
).
9.
R.
Weihrich
,
S. F.
Matar
,
E.
Betranhandy
, and
V.
Eyert
,
Solid State Sci.
5
,
701
(
2003
).
10.
R.
Weihrich
,
V.
Eyert
and
S. F.
Matar
,
Chem. Phys. Lett.
373
,
636
(
2003
).
11.
R.
Weihrich
,
D.
Kurowski
,
A. C.
Stuckl
,
S. F.
Matar
,
F.
Rau
, and
T.
Bernert
,
J. Solid State Chem.
177
,
2591
(
2004
).
12.
M.
Meier
and
R.
Weihrich
,
Chem. Phys. Lett.
461
,
38
(
2008
).
13.
F.
Bachhuber
,
J.
Rothballer
,
F.
Pielnhofer
and
R.
Weihrich
,
Z. Anorg. Allg. Chem.
636
,
2043
(
2010
).
14.
F.
Bachhuber
,
J.
Rothballer
,
F.
Pielnhofer
, and
R.
Weihrich
,
J. Chem. Phys.
135
,
124508
(
2011
).
15.
F.
Bachhuber
,
J.
Rothballer
,
T.
Söhnel
, and
R.
Weihrich
,
Z. Anorg. Allg. Chem.
638
,
1612
(
2012
).
16.
G.
Bergerhoff
and
I. D.
Brown
,
Crystallographic Databases
(
International Union of Crystallography
,
Chester
,
1987
).
17.
A.
Belsky
,
M.
Hellenbrandt
,
V. L.
Karen
, and
P.
Luksch
,
Acta Crystallogr., Sect. B: Struct. Sci.
58
,
364
(
2002
).
18.
V.
Eyert
,
K. H.
Hock
,
S.
Fiechter
, and
H.
Tributsch
,
Phys. Rev. B
57
,
6350
(
1998
).
19.
I.
Opahle
,
K.
Koepernik
, and
H.
Eschrig
,
Phys. Rev. B
60
,
14035
(
1999
).
20.
J.
von Appen
,
M. W.
Lumey
, and
R.
Dronskowski
,
Angew. Chem., Int. Ed.
45
,
4365
(
2006
).
21.
C.
Villevieille
,
C. M.
Ionica-Bousquet
,
J. C.
Jumas
, and
L.
Monconduit
,
Hyperfine Interact.
187
,
71
(
2008
).
22.
W. N.
Stassen
and
R. D.
Heyding
,
Can. J. Chem.
46
,
2159
(
1968
).
23.
H.
Holseth
and
A.
Kjekshus
,
Acta Chem. Scand.
22
,
3273
(
1968
).
24.
M. E.
Fleet
,
Am. Mineral.
57
,
1
(
1972
).
25.
A.
Kjekshus
,
P. G.
Peterzens
,
T.
Rakke
, and
A. F.
Andresen
,
Acta Chem. Scand.
33a
,
469
(
1979
).
26.
S.
Kaiman
,
Geological Series 51
(
University of Toronto Studies
,
1947
), p.
49
.
27.
S. L.
Bennett
and
R. D.
Heyding
,
Can. J. Chem.
44
,
3017
(
1966
).
28.
H.
Holseth
and
A.
Kjekshus
,
Acta Chem. Scand.
22
,
3284
(
1968
).
29.
A.
Kjekshus
,
T.
Rakke
, and
A. F.
Andresen
,
Acta Chem. Scand.
28a
,
996
(
1974
).
30.
A.
Kjekshus
and
T.
Rakke
,
Acta Chem. Scand.
31a
,
517
(
1977
).
31.
R. A.
Munson
,
Inorg. Chem.
7
,
389
(
1968
).
32.
P. C.
Donohue
,
T. A.
Bither
, and
H. S.
Young
,
Inorg. Chem.
7
,
998
(
1968
).
33.
34.
H.
Holseth
,
A.
Kjekshus
, and
A. F.
Andresen
,
Acta Chem. Scand.
24
,
3309
(
1970
).
35.
H.
Takizawa
,
K.
Uheda
, and
T.
Endo
,
Intermetallics
8
,
1399
(
2000
).
36.
E.
Larsson
,
Ark. Kemi
23
,
335
(
1965
).
37.
S. V.
Orishchin
,
V. S.
Babizhetskii
, and
Y. B.
Kuz'ma
,
Crystallogr. Rep.
45
,
894
(
2000
).
38.
E.
Gregoryanz
,
C.
Sanloup
,
M.
Somayazulu
,
J.
Badro
,
G.
Fiquet
,
H. K.
Mao
, and
R. J.
Hemley
,
Nature Mater.
3
,
294
(
2004
).
39.
J. C.
Crowhurst
,
A. F.
Goncharov
,
B.
Sadigh
,
C. L.
Evans
,
P. G.
Morrall
,
J. L.
Ferreira
, and
A. J.
Nelson
,
Science
311
,
1275
(
2006
).
40.
J. C.
Crowhurst
,
A. F.
Goncharov
,
B.
Sadigh
,
J. M.
Zaug
,
D.
Aberg
,
Y.
Meng
, and
V. B.
Prakapenka
,
J. Mater. Res.
23
,
1
(
2008
).
41.
N. N.
Zharavlev
,
Can. Mineral.
11
,
903
(
1973
).
42.
H. J.
Wallbaum
,
Z Metallkd
35
,
200
(
1943
).
43.
N. N.
Zhuravlev
and
A. A.
Stepanova
,
Sov. Phys., Crystallogr.
7
,
241
(
1962
).
44.
S.
Furuseth
,
K.
Selte
, and
A.
Kjekshus
,
Acta Chem. Scand.
19
,
735
(
1965
).
45.
T.
Biswas
and
K.
Schubert
,
J. Less-Common Met.
19
,
223
(
1969
).
46.
Y. C.
Bhatt
and
K.
Schubert
,
Z. Metallkd.
71
,
581
(
1980
).
47.
N. E.
Brese
and
H. G.
Vonschnering
,
Z. Anorg. Allg. Chem.
620
,
393
(
1994
).
48.
A. F.
Young
,
C.
Sanloup
,
E.
Gregoryanz
,
S.
Scandolo
,
R. J.
Hemley
, and
H. K.
Mao
,
Phys. Rev. Lett.
96
,
155501
(
2006
).
49.
J.
Ren
,
J.
Wang
, and
J.
Li
,
J. Fuel Chem. Tech.
35
,
458
(
2007
).
50.
D. D.
Zhao
,
L. C.
Zhou
,
Y.
Du
,
A. J.
Wang
,
Y. B.
Peng
,
Y.
Kong
,
C. S.
Sha
,
Y. F.
Ouyang
, and
W. Q.
Zhang
,
CALPHAD: Comput. Coupling Phase Diagrams Thermochem.
35
,
284
(
2011
).
51.
Z. W.
Chen
,
X. J.
Guo
,
Z. Y.
Liu
,
M. Z.
Ma
,
Q.
Jing
,
G.
Li
,
X. Y.
Zhang
,
L. X.
Li
,
Q.
Wang
,
Y. J.
Tian
, and
R. P.
Liu
,
Phys. Rev. B
75
,
054103
(
2007
).
52.
W.
Chen
,
J. S.
Tse
, and
J. Z.
Jiang
,
Solid State Commun.
150
,
181
(
2010
).
53.
H. R.
Soni
,
S. D.
Gupta
,
S. K.
Gupta
, and
P. K.
Jha
,
Physica B
406
,
2143
(
2011
).
54.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
55.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
56.
G.
Kresse
,
J. Non-Cryst. Solids
192–193
,
222
(
1995
).
57.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
58.
G.
Kresse
and
J.
Furthmuller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
59.
G.
Kresse
and
J.
Furthmuller
,
Phys. Rev. B
54
,
11169
(
1996
).
60.
P. E.
Blochl
,
Phys. Rev. B
50
,
17953
(
1994
).
61.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
62.
G.
Brostigen
and
A.
Kjekshus
,
Acta Chem. Scand.
24
,
2983
(
1970
).
63.
G.
Brostigen
and
A.
Kjekshus
,
Acta Chem. Scand.
24
,
2993
(
1970
).
64.
A.
Kjekshus
and
T.
Rakke
,
Struct. Bonding (Berlin)
19
,
85
(
1974
).
65.
H. G.
von Schnering
and
N. K.
Goh
,
Naturwiss.
61
,
272
(
1974
).
66.
G. V.
Vajenine
,
G.
Auffermann
,
Y.
Prots
,
W.
Schnelle
,
R. K.
Kremer
,
A.
Simon
, and
R.
Kniep
,
Inorg. Chem.
40
,
4866
(
2001
).
You do not currently have access to this content.