The Stokes-Einstein relation for the self-diffusion coefficient of a spherical particle suspended in an incompressible fluid is an asymptotic result in the limit of large Schmidt number, that is, when momentum diffuses much faster than the particle. When the Schmidt number is moderate, which happens in most particle methods for hydrodynamics, deviations from the Stokes-Einstein prediction are expected. We study these corrections computationally using a recently developed minimally resolved method for coupling particles to an incompressible fluctuating fluid in both two and three dimensions. We find that for moderate Schmidt numbers the diffusion coefficient is reduced relative to the Stokes-Einstein prediction by an amount inversely proportional to the Schmidt number in both two and three dimensions. We find, however, that the Einstein formula is obeyed at all Schmidt numbers, consistent with linear response theory. The mismatch arises because thermal fluctuations affect the drag coefficient for a particle due to the nonlinear nature of the fluid-particle coupling. The numerical data are in good agreement with an approximate self-consistent theory, which can be used to estimate finite-Schmidt number corrections in a variety of methods. Our results indicate that the corrections to the Stokes-Einstein formula come primarily from the fact that the particle itself diffuses together with the momentum. Our study separates effects coming from corrections to no-slip hydrodynamics from those of finite separation of time scales, allowing for a better understanding of widely observed deviations from the Stokes-Einstein prediction in particle methods such as molecular dynamics.

1.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
,
Course of Theoretical Physics
Vol.
6
(
Pergamon Press
,
Oxford, England
,
1959
).
2.
J. T.
Hynes
,
R.
Kapral
, and
M.
Weinberg
, “
Molecular theory of translational diffusion: Microscopic generalization of the normal velocity boundary condition
,”
J. Chem. Phys.
70
(
3
),
1456
(
1979
).
3.
J. R.
Schmidt
and
J. L.
Skinner
, “
Hydrodynamic boundary conditions, the Stokes–Einstein law, and long-time tails in the Brownian limit
,”
J. Chem. Phys.
119
,
8062
(
2003
).
4.
D.
Bedeaux
and
P.
Mazur
, “
Renormalization of the diffusion coefficient in a fluctuating fluid III. Diffusion of a Brownian particle with finite size
,”
Physica A: Stat. Mech. Appl.
80
,
189
202
(
1975
).
5.
T.
Keyes
and
I.
Oppenheim
, “
Bilinear hydrodynamics and the Stokes-Einstein law
,”
Phys. Rev. A
8
,
937
949
(
1973
).
6.
B. J.
Alder
and
W. E.
Alley
, “
Generalized hydrodynamics
,”
Phys. Today
37
(
1
),
56
(
1984
).
7.
P. J.
Atzberger
, “
Velocity correlations of a thermally fluctuating Brownian particle: A novel model of the hydrodynamic coupling
,”
Phys. Lett. A
351
(
4–5
),
225
230
(
2006
).
8.
X.
Bian
,
S.
Litvinov
,
R.
Qian
,
M.
Ellero
, and
N. A.
Adams
, “
Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics
,”
Phys. Fluids
24
(
1
),
012002
(
2012
).
9.
A.
Vázquez-Quesada
,
M.
Ellero
, and
P.
Español
, “
Consistent scaling of thermal fluctuations in smoothed dissipative particle dynamics
,”
J. Chem. Phys.
130
,
034901
(
2009
).
10.
A.
Donev
,
A. L.
Garcia
, and
B. J.
Alder
, “
Stochastic hard-sphere dynamics for hydrodynamics of non-ideal fluids
,”
Phys. Rev. Lett.
101
,
075902
(
2008
).
11.
C.-C.
Huang
,
G.
Gompper
, and
R. G.
Winkler
, “
Hydrodynamic correlations in multiparticle collision dynamics fluids
,”
Phys. Rev. E
86
,
056711
(
2012
).
12.
R.
Kapral
, “
Multiparticle collision dynamics: Simulation of complex systems on mesoscales
,”
Adv. Chem. Phys.
140
,
89
(
2008
).
13.
G.
Gompper
,
T.
Ihle
,
D.
Kroll
, and
R.
Winkler
, “
Multi-Particle collision dynamics: A particle-based mesoscale simulation approach to the hydrodynamics of complex fluids
,”
Advanced Computer Simulation Approaches for Soft Matter Sciences III
(
Springer
,
2009
), pp.
1
87
.
14.
B.
Dünweg
and
A. J. C.
Ladd
, “
Lattice Boltzmann simulations of soft matter systems
,”
Advanced Computer Simulation for Soft Matter Sciences III
(
Springer
,
2009
), pp.
89
166
.
15.
P. J.
Atzberger
,
P. R.
Kramer
, and
C. S.
Peskin
, “
A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales
,”
J. Comput. Phys.
224
,
1255
1292
(
2007
).
16.
P. J.
Atzberger
, “
Stochastic Eulerian-Lagrangian methods for fluid-structure interactions with thermal fluctuations
,”
J. Comput. Phys.
230
,
2821
2837
(
2011
).
17.
F.
Balboa Usabiaga
,
R.
Delgado-Buscalioni
,
B. E.
Griffith
, and
A.
Donev
, “
Inertial coupling method for particles in an incompressible fluctuating fluid
,”
Comput. Methods Appl. Mech. Eng.
(in press); preprint e-print arXiv:1212.6427.
18.
T. T.
Pham
,
U. D.
Schiller
,
J. R.
Prakash
, and
B.
Dünweg
, “
Implicit and explicit solvent models for the simulation of a single polymer chain in solution: Lattice Boltzmann versus Brownian dynamics
,”
J. Chem. Phys.
131
,
164114
(
2009
).
19.
A. J. C.
Ladd
,
R.
Kekre
, and
J. E.
Butler
, “
Comparison of the static and dynamic properties of a semiflexible polymer using lattice Boltzmann and Brownian-dynamics simulations
,”
Phys. Rev. E
80
(
3
),
036704
(
2009
).
20.
J. C.
Lewis
, “
On the einstein-stokes diffusion coefficient for Brownian motion in two dimensions
,”
Phys. Lett. A
44
(
4
),
245
246
(
1973
).
21.
A.
Donev
,
A. L.
Garcia
,
A.
de la Fuente
, and
J. B.
Bell
, “
Enhancement of diffusive transport by nonequilibrium thermal fluctuations
,”
J. Stat. Mech.: Theory Exp.
(
2011
)
P06014
.
22.
J. M. O.
De Zarate
and
J. V.
Sengers
,
Hydrodynamic Fluctuations in Fluids and Fluid Mixtures
(
Elsevier Science Ltd
,
2006
).
23.
Song
Hi Lee
and
R.
Kapral
, “
Friction and diffusion of a Brownian particle in a mesoscopic solvent
,”
J. Chem. Phys.
121
,
11163
(
2004
).
24.
A.
Donev
,
T. G.
Fai
, and
E.
Vanden-Eijnden
, “
Reversible diffusive mixing by thermal velocity fluctuations
,” preprint arXiv:1306.3158 (
2013
).
25.
G.
Tabak
and
P. J.
Atzberger
, “
Systematic stochastic reduction of inertial fluid-structure interactions subject to thermal fluctuations
,” preprint arXiv:1211.3798 (
2013
).
26.
F.
Balboa Usabiaga
,
J. B.
Bell
,
R.
Delgado-Buscalioni
,
A.
Donev
,
T. G.
Fai
,
B. E.
Griffith
, and
C. S.
Peskin
, “
Staggered schemes for fluctuating hydrodynamics
,”
SIAM J. Multiscale Model. Simul.
10
(
4
),
1369
1408
(
2012
).
27.
C. S.
Peskin
, “
The immersed boundary method
,”
Acta Numerica
11
,
479
517
(
2002
).
28.
P. J.
Atzberger
, “
A note on the correspondence of an immersed boundary method incorporating thermal fluctuations with Stokesian-Brownian dynamics
,”
Physica D: Nonlinear Phenom.
226
(
2
),
144
150
(
2007
).
29.
H.
Hasimoto
, “
On the periodic fundamental solutions of the stokes equations and their application to viscous flow past a cubic array of spheres
,”
J. Fluid Mech.
5
(
02
),
317
328
(
1959
).
30.
F.
Balboa Usabiaga
,
I.
Pagonabarraga
, and
R.
Delgado-Buscalioni
, “
Inertial coupling for point particle fluctuating hydrodynamics
,”
J. Comput. Phys.
235
,
701
722
(
2013
).
31.
A. M.
Roma
,
C. S.
Peskin
, and
M. J.
Berger
, “
An adaptive version of the immersed boundary method
,”
J. Comput. Phys.
153
(
2
),
509
534
(
1999
).
32.
E. J.
Hinch
, “
Application of the Langevin equation to fluid suspensions
,”
J. Fluid Mech.
72
(
03
),
499
511
(
1975
).
33.
R. M.
Jendrejack
,
J. J.
de Pablo
, and
M. D.
Graham
, “
Stochastic simulations of DNA in flow: Dynamics and the effects of hydrodynamic interactions
,”
J. Chem. Phys.
116
(
17
),
7752
7759
(
2002
).
34.
R.
Kekre
,
J. E.
Butler
, and
A. J. C.
Ladd
, “
Comparison of lattice-Boltzmann and Brownian-dynamics simulations of polymer migration in confined flows
,”
Phys. Rev. E
82
,
011802
(
2010
).
35.
Y.
Pomeau
and
P.
Résibois
, “
Time dependent correlation functions and mode-mode coupling theories
,”
Phys. Rep.
19
,
63
139
(
1975
).
36.
B. J.
Alder
and
T. E.
Wainwright
, “
Decay of the velocity autocorrelation function
,”
Phys. Rev. A
1
(
1
),
18
21
(
1970
).
37.
D.
Bedeaux
and
P.
Mazur
, “
Renormalization of the diffusion coefficient in a fluctuating fluid I
,”
Physica
73
,
431
458
(
1974
).
38.
P.
Mazur
and
D.
Bedeaux
, “
Renormalization of the diffusion coefficient in a fluctuating fluid II
,”
Physica
75
,
79
99
(
1974
).
39.
I. A.
Michaels
and
I.
Oppenheim
, “
Trilinear mode effects on transport coefficients
,”
Physica A
81
(
4
),
522
534
(
1975
).
40.
T. E.
Wainwright
,
B. J.
Alder
, and
D. M.
Gass
, “
Decay of time correlations in two dimensions
,”
Phys. Rev. A
4
(
1
),
233
237
(
1971
).
41.
H. H. H.
Yuan
and
I.
Oppenheim
, “
Transport in two dimensions. III. Self-diffusion coefficient at low densities
,”
Physica A
90
(
3–4
),
561
573
(
1978
).
42.
C. P.
Lowe
and
D.
Frenkel
, “
The super long-time decay of velocity fluctuations in a two-dimensional fluid
,”
Physica A
220
(
3-4
),
251
260
(
1995
).
43.
M.
Isobe
, “
Long-time tail of the velocity autocorrelation function in a two-dimensional moderately dense hard-disk fluid
,”
Phys. Rev. E
77
(
2
),
021201
(
2008
).
44.
D. M.
Gass
, “
Enskog theory for a rigid disk fluid
,”
J. Chem. Phys.
54
(
5
),
1898
1902
(
1971
).
45.
R.
García-Rojo
,
S.
Luding
, and
J. J.
Brey
, “
Transport coefficients for dense hard-disk systems
,”
Phys. Rev. E
74
(
6
),
061305
(
2006
).
46.
A. P. S.
Bhalla
,
B. E.
Griffith
,
N. A.
Patankar
, and
A.
Donev
, “
A minimally-resolved immersed boundary model for reaction-diffusion problems
,”
J. Chem. Phys.
139
,
214112
(
2013
); preprint arXiv:1306.3159.
47.
R.
Kubo
, “
The fluctuation-dissipation theorem
,”
Rep. Prog. Phys.
29
(
1
),
255
284
(
1966
).
48.
C.
Hijón
,
P.
Español
,
E.
Vanden-Eijnden
, and
R.
Delgado-Buscalioni
, “
Mori-Zwanzig formalism as a practical computational tool
,”
Faraday Discuss.
144
,
301
322
(
2010
).
49.
For unbounded three-dimensional systems the Oseen tensor is
${\bm G}({\bm r}^{\prime },{\bm r}^{\prime \prime })\break = (8\pi r)^{-1} ({\bm I}+r^{-2}{\bm r}\otimes {\bm r} )$
G(r,r)=(8πr)1(I+r2rr)
, where
${\bm r}={\bm r}^{\prime }-{\bm r}^{\prime \prime }$
r=rr
.
50.
Note that for truly two-dimensional systems ρ has units of kg/m2, unlike three dimensions where it has units kg/m3. This accounts for the difference in units of viscosity η in the Stokes-Einstein relation (ν has units of m2/s independent of the dimension).
51.
Note that freely diffusing neutrally-buoyant blobs are passive tracers since they simply follow the fluid but do not affect it.
52.
In our model, (6) has a non-linear coupling between fluid and particle velocities. In more traditional models the no-slip boundary condition needs to be applied on a moving surface, which is hard and not done in most models, see for example the assumptions made in Ref. 32.
53.
The small variation around the average value comes because the spatial discretization is only approximately translationally invariant.
54.
This can be seen from the fact that the last term in (15) does not appear in (16).
You do not currently have access to this content.