Electron transfer between redox proteins participating in energy chains of biology is required to proceed with high energetic efficiency, minimizing losses of redox energy to heat. Within the standard models of electron transfer, this requirement, combined with the need for unidirectional (preferably activationless) transitions, is translated into the need to minimize the reorganization energy of electron transfer. This design program is, however, unrealistic for proteins whose active sites are typically positioned close to the polar and flexible protein-water interface to allow inter-protein electron tunneling. The high flexibility of the interfacial region makes both the hydration water and the surface protein layer act as highly polar solvents. The reorganization energy, as measured by fluctuations, is not minimized, but rather maximized in this region. Natural systems in fact utilize the broad breadth of interfacial electrostatic fluctuations, but in the ways not anticipated by the standard models based on equilibrium thermodynamics. The combination of the broad spectrum of static fluctuations with their dispersive dynamics offers the mechanism of dynamical freezing (ergodicity breaking) of subsets of nuclear modes on the time of reaction/residence of the electron at a redox cofactor. The separation of time-scales of nuclear modes coupled to electron transfer allows dynamical freezing. In particular, the separation between the relaxation time of electro-elastic fluctuations of the interface and the time of conformational transitions of the protein caused by changing redox state results in dynamical freezing of the latter for sufficiently fast electron transfer. The observable consequence of this dynamical freezing is significantly different reorganization energies describing the curvature at the bottom of electron-transfer free energy surfaces (large) and the distance between their minima (Stokes shift, small). The ratio of the two reorganization energies establishes the parameter by which the energetic efficiency of protein electron transfer is increased relative to the standard expectations, thus minimizing losses of energy to heat. Energetically efficient electron transfer occurs in a chain of conformationally quenched cofactors and is characterized by flattened free energy surfaces, reminiscent of the flat and rugged landscape at the stability basin of a folded protein.

1.
R. A.
Marcus
,
Annu. Rev. Phys. Chem.
15
,
155
(
1964
).
2.
R. A.
Marcus
and
N.
Sutin
,
Biochim. Biophys. Acta
811
,
265
(
1985
).
3.
The residence time of waters in hydration shells of Fe2 + /3 + ions ranges between 10−7 s (Fe2 +) and 10−3 s (Fe3 +), see
G. W.
Neilson
and
J. E.
Enderby
,
Adv. Inorg. Chem.
34
,
195
(
1989
).
4.
F. O.
Raineri
and
H. L.
Friedman
,
Adv. Chem. Phys.
107
,
81
(
1999
).
5.
M. D.
Newton
,
Adv. Chem. Phys.
106
,
303
(
1999
).
6.
L. L.
Conte
,
C.
Chothia
, and
J.
Janin
,
J. Mol. Biol.
285
,
2177
(
1999
).
7.
D. J.
Barlow
and
J. M.
Thornton
,
Biopolymers
25
,
1717
(
1986
).
8.
Y.
Levy
and
J.
Onuchic
,
Annu. Rev. Biophys. Biomol. Struct.
35
,
389
(
2006
).
9.
N.
Giovambattista
,
C. F.
Lopez
,
P. J.
Rossky
, and
P. G.
Debenedetti
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
2274
(
2008
).
10.
F.
Pizzitutti
,
M.
Marchi
,
F.
Sterpone
, and
P. J.
Rossky
,
J. Phys. Chem. B
111
,
7584
(
2007
).
11.
D. N.
LeBard
and
D. V.
Matyushov
,
J. Phys. Chem. B
114
,
9246
(
2010
).
12.
C. Y.
Lee
,
J. A.
McCammon
, and
P. J.
Rossky
,
J. Chem. Phys.
80
,
4448
(
1984
).
13.
C. L.
McFearin
,
D. K.
Beaman
,
F. G.
Moore
, and
G. L.
Richmond
,
J. Phys. Chem. C
113
,
1171
(
2009
).
14.
S.
Nihonyanagi
,
S.
Yamaguchi
, and
T.
Tahara
,
J. Chem. Phys.
130
,
204704
(
2009
).
15.
D.
Verreault
,
W.
Hua
, and
H. C.
Allen
,
J. Phys. Chem. Lett.
3
,
3012
(
2012
).
16.
J. A.
Mondal
,
S.
Nihonyanagi
,
S.
Yamaguchi
, and
T.
Tahara
,
J. Am. Chem. Soc.
134
,
7842
(
2012
).
17.
M.
Gerstein
and
C.
Chothia
,
Proc. Natl. Acad. Sci. U.S.A.
93
,
10167
(
1996
).
18.
D. I.
Svergun
,
S.
Richard
,
M. H. J.
Koch
,
Z.
Sayers
,
S.
Kuprin
, and
G.
Zaccai
,
Proc. Natl. Acad. Sci. U.S.A.
95
,
2267
(
1998
).
19.
D.
Russo
,
J.
Teixeira
,
L.
Kneller
,
J. R. D.
Copley
,
J.
Ollivier
,
S.
Perticaroli
,
E.
Pellegrini
, and
M. A.
Gonzalez
,
J. Am. Chem. Soc.
133
,
4882
(
2011
).
20.
M.
Heyden
,
D. J.
Tobias
, and
D. V.
Matyushov
,
J. Chem. Phys.
137
,
235103
(
2012
).
21.
L.
Comez
,
L.
Lupi
,
A.
Morresi
,
M.
Paolantoni
,
P.
Sassi
, and
D.
Fioretto
,
J. Phys. Chem. Lett.
4
,
1188
(
2013
).
22.
K. A.
Henzler-Wildman
,
V.
Thai
,
M.
Lei
,
M.
Ott
,
M.
Wolf-Watz
,
T.
Fenn
,
E.
Pozharski
,
M. A.
Wilson
,
G. A.
Petsko
,
M.
Karplus
,
C. G.
Hubner
, and
D.
Kern
,
Nature (London)
450
,
838
(
2007
).
23.
A. J.
Wand
,
Nat. Struct. Biol.
8
,
926
(
2001
).
24.
H.
Frauenfelder
,
G.
Chen
,
J.
Berendzen
,
P. W.
Fenimore
,
H.
Jansson
,
B. H.
McMahon
,
I. R.
Stroe
,
J.
Swenson
, and
R. D.
Young
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
5129
(
2009
).
25.
M. C.
Thielges
and
M. D.
Fayer
,
Acc. Chem. Res.
45
,
1866
(
2012
).
26.
P. I.
Zhuravlev
and
G. A.
Papoian
,
Q. Rev. Biophys.
43
,
295
(
2010
).
27.
Z.
Wang
,
C. E.
Bertrand
,
W.-S.
Chiang
,
E.
Fratini
,
P.
Baglioni
,
A.
Alatas
,
E. E.
Alp
, and
S.-H.
Chen
,
J. Phys. Chem. B
117
,
1186
(
2013
).
28.
D. R.
Martin
and
D. V.
Matyushov
,
J. Chem. Phys.
137
,
165101
(
2012
).
29.
S.
Sen
,
D.
Andreatta
,
S. Y.
Ponomarev
,
D. L.
Beveridge
, and
M. A.
Berg
,
J. Am. Chem. Soc.
131
,
1724
(
2009
).
30.
D. V.
Matyushov
,
J. Phys. Chem. B
115
,
10715
(
2011
).
31.
M.
Lax
,
J. Chem. Phys.
20
,
1752
(
1952
).
32.
L. D.
Zusman
,
Chem. Phys.
49
,
295
(
1980
).
33.
J. K.
Hwang
and
A.
Warshel
,
J. Am. Chem. Soc.
109
,
715
(
1987
).
34.
R. A.
Kuharski
,
J. S.
Bader
,
D.
Chandler
,
M.
Sprik
,
M. L.
Klein
, and
R. W.
Impey
,
J. Chem. Phys.
89
,
3248
(
1988
).
35.
M.
Tachiya
,
J. Phys. Chem.
93
,
7050
(
1989
).
36.
G.
King
and
A.
Warshel
,
J. Chem. Phys.
93
,
8682
(
1990
).
37.
A.
Warshel
and
W. W.
Parson
,
Annu. Rev. Phys. Chem.
42
,
279
(
1991
).
38.
S. K.
Pal
and
A. H.
Zewail
,
Chem. Rev.
104
,
2099
(
2004
).
39.
L.
Zhang
,
L.
Wang
,
Y.-T.
Kao
,
W.
Qiu
,
Y.
Yang
,
O.
Okobiah
, and
D.
Zhong
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
18461
(
2007
).
40.
P.
Abbyad
,
X.
Shi
,
W.
Childs
,
T. B.
McAnaney
,
B. E.
Cohen
, and
S. G.
Boxer
,
J. Phys. Chem. B
111
,
8269
(
2007
).
41.
D.
Zhong
,
S. K.
Pal
, and
A. H.
Zewail
,
Chem. Phys. Lett.
503
,
1
(
2011
).
42.
B.
Bagchi
,
Chem. Phys. Lett.
529
,
1
(
2012
).
43.
D. N.
LeBard
and
D. V.
Matyushov
,
J. Phys. Chem. B
112
,
5218
(
2008
).
44.
A. A.
Golosov
and
M.
Karplus
,
J. Phys. Chem. B
111
,
1482
(
2007
).
45.
D. R.
Martin
and
D. V.
Matyushov
,
J. Phys. Chem. B
116
,
10294
(
2012
).
46.
X. J.
Jordanides
,
M. J.
Lang
,
X.
Song
, and
G. R.
Fleming
,
J. Phys. Chem. B
103
,
7995
(
1999
).
47.
D.
Toptygin
,
A. M.
Gronenborn
, and
L.
Brand
,
J. Phys. Chem. B
110
,
26292
(
2006
).
48.
K.
Sahu
,
S. K.
Mondal
,
S.
Ghosh
,
D.
Roy
, and
K.
Bhattacharyya
,
J. Chem. Phys.
124
,
124909
(
2006
).
49.
K.
Bhattacharyya
,
Chem. Commun.
2008
,
2848
.
50.
J.
Tripathy
and
W. F.
Beck
,
J. Phys. Chem. B
114
,
15958
(
2010
).
51.
D. V.
Matyushov
,
J. Chem. Phys.
130
,
164522
(
2009
).
52.
D. N.
LeBard
and
D. V.
Matyushov
,
Phys. Chem. Chem. Phys.
12
,
15335
(
2010
).
53.
54.
P. K.
Ghorai
and
D. V.
Matyushov
,
J. Phys. Chem. B
110
,
1866
(
2006
).
55.
D. W.
Small
,
D. V.
Matyushov
, and
G. A.
Voth
,
J. Am. Chem. Soc.
125
,
7470
(
2003
).
56.
D. G.
Nicholls
and
S. J.
Ferguson
,
Bioenergetics 3
(
Academic Press
,
London
,
2002
).
57.
R. A.
Marcus
,
J. Chem. Phys.
43
,
1261
(
1965
).
58.
D. N.
LeBard
,
V.
Kapko
, and
D. V.
Matyushov
,
J. Phys. Chem. B
112
,
10322
(
2008
).
59.
R. A.
Marcus
,
Rev. Mod. Phys.
65
,
599
(
1993
).
60.
C. H.
Bennett
,
J. Comput. Phys.
22
,
245
(
1976
).
61.
L.
Reynolds
,
J. A.
Gardecki
,
S. J. V.
Frankland
, and
M.
Maroncelli
,
J. Phys. Chem.
100
,
10337
(
1996
).
62.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1995
).
63.
G. R.
Fleming
and
M.
Cho
,
Annu. Rev. Phys. Chem.
47
,
109
(
1996
).
64.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Academic Press
,
Amsterdam
,
2003
).
65.
M.
Bixon
and
J.
Jortner
,
Adv. Chem. Phys.
106
,
35
(
1999
).
66.
R.
Jimenez
,
G. R.
Fleming
,
P. V.
Kumar
, and
M.
Maroncelli
,
Nature (London)
369
,
471
(
1994
).
67.
N.
Gayathri
and
B.
Bagchi
,
J. Phys. Chem.
100
,
3056
(
1996
).
68.
C.
Creutz
,
M. D.
Newton
, and
N.
Sutin
,
J. Photochem. Photobiol., A
82
,
47
(
1994
).
69.
M.
Cascella
,
A.
Magistrato
,
I.
Tavernelli
,
P.
Carloni
, and
U.
Rothlisberger
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
19641
(
2006
).
70.
X.
Xie
,
S. I.
Gorelsky
,
R.
Sarangi
,
D. K.
Garner
,
H. J.
Hwang
,
K. O.
Hodgson
,
B.
Hedman
,
Y.
Lu
, and
E. I.
Solomon
,
J. Am. Chem. Soc.
130
,
5194
(
2008
).
71.
E. E.
Hammi
,
C.
Houee-Levin
,
J.
Rezac
,
B.
Levy
,
I.
Demachy
,
L.
Baciou
, and
A.
de la Lande
,
Phys. Chem. Chem. Phys.
14
,
13872
(
2012
).
72.
M. G. I.
Galinato
,
J. G.
Kleingardner
,
S. E. J.
Bowman
,
E. E.
Alp
,
J.
Zhao
,
K. L.
Bren
, and
N.
Lehnert
,
Proc. Natl. Acad. Sci. U.S.A.
109
,
8896
(
2012
).
73.
Cytochrome C: A Multidisciplinary Approach
, edited by
R. A.
Scott
and
A. G.
Mauk
(
University Science Books
,
Sausalito, CA
,
1996
).
74.
A. N.
Volkov
,
S.
Vanwetswinkel
,
K.
Water
, and
N. A. J.
Nuland
,
J. Biomol. NMR
52
,
245
(
2012
).
75.
K.
Henzler-Wildman
and
D.
Kern
,
Nature (London)
450
,
964
(
2007
).
76.
D. V.
Matyushov
,
Acc. Chem. Res.
40
,
294
(
2007
).
77.
U.
Mandal
,
S.
Ghosh
,
S.
Dey
,
A.
Adhikari
, and
K.
Bhattacharyya
,
J. Chem. Phys.
128
,
164505
(
2008
).
78.
D. V.
Matyushov
,
J. Phys. Chem. Lett.
3
,
1644
(
2012
).
79.
D. V.
Matyushov
and
A. Y.
Morozov
,
Phys. Rev. E
84
,
011908
(
2011
).
80.
D.
Laage
,
G.
Stirnemann
,
F.
Sterpone
,
R.
Rey
, and
J. T.
Hynes
,
Annu. Rev. Phys. Chem.
62
,
395
(
2011
).
81.
T.
Li
,
A. A.
Hassanali
, and
S. J.
Singer
,
J. Phys. Chem. B
112
,
16121
(
2008
).
82.
P. F.
Barbara
,
T. J.
Meyer
, and
M. A.
Ratner
,
J. Phys. Chem.
100
,
13148
(
1996
).
83.
D.
Andreatta
,
J. L.
Pérez
,
S. A.
Kovalenko
,
N. P.
Ernsting
,
C. J.
Murphy
,
R. S.
Coleman
, and
M. A.
Berg
,
J. Am. Chem. Soc.
127
,
7270
(
2005
).
84.
N.
Ito
,
K.
Duvvuri
,
D. V.
Matyushov
, and
R.
Richert
,
J. Chem. Phys.
125
,
024504
(
2006
).
85.
G.
van der Zwan
and
J. T.
Hynes
,
J. Chem. Phys
78
,
4174
(
1983
).
86.
H.
Sumi
and
R. A.
Marcus
,
J. Chem. Phys
84
,
4894
(
1986
).
87.
G. C.
Walker
,
E.
Åkesson
,
A. E.
Johnson
,
N. E.
Levinger
, and
P. F.
Barbara
,
J. Phys. Chem.
96
,
3728
(
1992
).
88.
H.
Pal
,
H.
Shirota
,
K.
Tominaga
, and
K.
Yoshihara
,
J. Chem. Phys.
110
,
11454
(
1999
).
89.
D.
Thirumalai
,
E. P.
O'Brien
,
G.
Morrison
, and
C.
Hyeon
,
Annu. Rev. Biophys.
39
,
159
(
2010
).
90.
R. G.
Palmer
,
Adv. Phys.
31
,
669
(
1982
).
91.
P. W.
Fenimore
,
H.
Frauenfelder
,
B. H.
McMahon
, and
R. D.
Young
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
14408
(
2004
).
92.
D. V.
Matyushov
,
Chem. Phys.
351
,
46
(
2008
).
93.
A. D.
Friesen
and
D. V.
Matyushov
(unpublished).
94.
G.
Loffler
,
H.
Schreiber
, and
O.
Steinhauser
,
J. Mol. Biol.
270
,
520
(
1997
).
95.
L.
Nilsson
and
B.
Halle
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
13867
(
2005
).
96.
T.
Rudas
,
C.
Schröder
,
S.
Boresch
, and
O.
Steinhauser
,
J. Chem. Phys.
124
,
234908
(
2006
).
97.
D. V.
Matyushov
,
J. Chem. Phys.
136
,
085102
(
2012
).
98.
D. N.
LeBard
and
D. V.
Matyushov
,
J. Phys. Chem. B
113
,
12424
(
2009
).
99.
F.
Meschi
,
F.
Wiertz
,
L.
Klauss
,
A.
Blok
,
B.
Ludwig
,
A.
Merli
,
H. A.
Heering
,
G. L.
Rossi
, and
M.
Ubbink
,
J. Am. Chem. Soc.
133
,
16861
(
2011
).
100.
Q.
Bashir
,
S.
Scanu
, and
M.
Ubbink
,
FEBS J.
278
,
1391
(
2011
).
101.
M. M.
Tirion
,
Phys. Rev. Lett.
77
,
1905
(
1996
).
102.
A. R.
Atilgan
,
S. R.
Durell
,
R. L.
Jernigan
,
M. C.
Demirel
,
O.
Keskin
, and
I.
Bahar
,
Biophys. J.
80
,
505
(
2001
).
103.
D.
Ming
and
M. E.
Wall
,
Phys. Rev. Lett.
95
,
198103
(
2005
).
104.
K.
Moritsugu
and
J. C.
Smith
,
Biophys. J.
93
,
3460
(
2007
).
105.
D. V.
Matyushov
and
M. D.
Newton
,
J. Phys. Chem. A
105
,
8516
(
2001
).
106.
M.
Drobizhev
,
N. S.
Makarov
,
S. E.
Tillo
,
T. E.
Hughes
, and
A.
Rebane
,
J. Phys. Chem. B
116
,
1736
(
2012
).
107.
J.
Hirst
and
F. A.
Armstrong
,
Anal. Chem.
70
,
5062
(
1998
).
108.
Q.
Chi
,
J.
Zhang
,
J. E. T.
Andersen
, and
J.
Ulstrup
,
J. Phys. Chem. B
105
,
4669
(
2001
).
109.
L. J. C.
Jeuken
,
J. P.
McEvoy
, and
F. A.
Armstrong
,
J. Phys. Chem. B
106
,
2304
(
2002
).
110.
P.
Hildebrandt
and
D. H.
Murgida
,
Bioelectrochemistry
55
,
139
(
2002
).
111.
Y.
Guo
,
J.
Zhao
,
X.
Yin
,
X.
Gao
, and
Y.
Tian
,
J. Phys. Chem. C
112
,
6013
(
2008
).
112.
D. E.
Khoshtariya
,
T. D.
Dolidze
,
M.
Shushanyan
,
K. L.
Davis
,
D. H.
Waldeck
, and
R.
van Eldik
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
2757
(
2010
).
113.
H.
Khoa Ly
,
N.
Wisitruangsakul
,
M.
Sezer
,
J.-J.
Feng
,
A.
Kranich
,
I. M.
Weidinger
,
I.
Zebger
,
D. H.
Murgida
, and
P.
Hildebrandt
,
J. Electroanal. Chem.
660
,
367
(
2011
).
114.
S.
Monari
,
G.
Battistuzzi
,
C. A.
Bortolotti
,
S.
Yanagisawa
,
K.
Sato
,
C.
Li
,
I.
Salard
,
D.
Kostrz
,
M.
Borsari
,
A.
Ranieri
,
C.
Dennison
, and
M.
Sola
,
J. Am. Chem. Soc.
134
,
11848
(
2012
).
115.
L.
Paltrinieri
,
M.
Borsari
,
A.
Ranieri
,
G.
Battistuzzi
,
S.
Corni
, and
C. A.
Bortolotti
,
J. Phys. Chem. Lett.
4
,
710
(
2013
).
116.
D. N.
LeBard
and
D. V.
Matyushov
,
Phys. Rev. E
78
,
061901
(
2008
).
117.
D. A.
McQuarrie
,
Statistical Mechanics
(
University Science Books
,
Sausalito, CA
,
2000
).
118.
N.
Lane
,
Power, Sex, Suicide. Mitochondria and the Meaning of Life
(
Oxford University Press
,
Oxford
,
2005
).
119.
A. J.
Hoff
and
J.
Deisenhofer
,
Phys. Rep.
287
,
1
(
1997
).
120.
A. R.
Crofts
,
Biochim. Biophys. Acta
1655
,
77
(
2004
).
121.
D.
Noy
,
C. C.
Moser
, and
P. L.
Dutton
,
Biochim. Biophys. Acta
1757
,
90
(
2006
).
122.
R. D.
Astumian
,
Annu. Rev. Biophys.
40
,
289
(
2011
).
123.
P. C.
Whitford
,
K. Y.
Sanbonmatsu
, and
J. N.
Onuchic
,
Rep. Prog. Phys.
75
,
076601
(
2012
).
124.
A.
Osyczka
,
C. C.
Moser
, and
P. L.
Dutton
,
Trends Biochem. Sci.
30
,
176
(
2005
).
You do not currently have access to this content.