By density functional theory calculations, the scanning tunneling microscopy (STM) images of various hydrogen clusters adsorbed on bilayer-graphene are systematically simulated. The hydrogen configurations of the STM images observed in the experiments have been thoroughly figured out. In particular, two kinds of hydrogen dimers (ortho-dimer, para-dimer) and two kinds of tetramers (tetramer-A, -B) are determined to be the hydrogen configurations corresponding to the ellipsoidal-like STM images with different structures and sizes. One particular hexamer (hexamer-B) is the hydrogen configuration generating the star-like STM images. For each hydrogen cluster, the simulated STM images show unique voltage-dependent features, which provides a feasible way to determine hydrogen adsorption states on graphene or graphite surface in the experiments by varying-voltage measurements. Stability analysis proves that the above determined hydrogen configurations are quite stable on graphene, hence they are likely to be detected in the STM experiments. Consequently, through systematic analysis of the STM images and the stability of hydrogen clusters on bilayer graphene, many experimental observations have been consistently explained.

1.
R.
Balog
,
B.
Jørgensen
,
L.
Nilsson
,
M.
Andersen
,
E.
Rienks
,
M.
Bianchi
,
M.
Fanetti
,
E.
Lægsgaard
,
A.
Baraldi
,
S.
Lizzit
,
Ž.
Šljivančanin
,
F.
Besenbacher
,
B.
Hammer
,
P.
Thomas
,
G. P.
Hofmann
, and
L.
Hornekær
,
Nature Mater.
9
,
315
(
2010
).
2.
P.
Sessi
,
J. R.
Guest
,
M.
Bode
, and
N. P.
Guisinger
,
Nano Lett.
9
,
4343
(
2009
).
3.
D. K.
Samarakoon
and
X. Q.
Wang
,
ACS Nano
4
,
4126
(
2010
).
4.
O.
Leenaerts
,
B.
Partoens
, and
F. M.
Peeters
,
Phys. Rev. B
80
,
245422
(
2009
).
5.
O. V.
Yazyev
and
L.
Helm
,
Phys. Rev. B
75
,
125408
(
2007
).
6.
F.
Yavari
,
C.
Kritzinger
,
C.
Gaire
,
L.
Song
,
H.
Gulapalli
,
T.
Borca-Tasciuc
,
P. M.
Ajayan
, and
N.
Koratkar
,
Small
6
,
2535
(
2010
).
7.
X.
Dong
,
Y.
Shi
,
Y.
Zhao
,
D.
Chen
,
J.
Ye
,
Y.
Yao
,
F.
Gao
,
Z.
Ni
,
T.
Yu
,
Z.
Shen
,
Y.
Huang
,
P.
Chen
, and
L.
Li
,
Phys. Rev. Lett.
102
,
135501
(
2009
).
8.
Y. V.
Churkin
,
A. B.
Fedortsov
,
G. L.
Klimchitskaya
, and
V. A.
Yurova
,
Phys. Rev. B
82
,
165433
(
2010
).
9.
S.
Patchkovskii
,
J. S.
Tse
,
S. N.
Yurchenko
,
L.
Zhechkov
,
T.
Heine
, and
G.
Seifert
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
10439
(
2005
).
10.
E.
Vietzke
and
V.
Philipps
,
Nucl. Instrum. Methods Phys. Res. B
23
,
449
(
1987
).
11.
S.
Miyajima
,
T.
Chiba
,
T.
Enoki
,
H.
Inokuchi
, and
M.
Sano
,
Phys. Rev. B
37
,
3246
(
1988
).
12.
L.
Hornekær
,
E.
Rauls
,
W.
Xu
,
Ž.
Šljivančanin
,
R.
Otero
,
I.
Stensgaard
,
E.
Lægsgaard
,
B.
Hammer
, and
F.
Besenbacher
,
Phys. Rev. Lett.
97
,
186102
(
2006
).
13.
L.
Hornekær
,
Ž.
Šljivančanin
,
W.
Xu
,
R.
Otero
,
E.
Rauls
,
I.
Stensgaard
,
E.
Lægsgaard
,
B.
Hammer
, and
F.
Besenbacher
,
Phys. Rev. Lett.
96
,
156104
(
2006
).
14.
R.
Balog
,
B.
Jørgensen
,
J.
Wells
,
E.
Lægsgaard
,
P.
Hofmann
,
F.
Besenbacher
, and
L.
Hornekær
,
J. Am. Chem. Soc.
131
,
8744
(
2009
).
15.
L.
Hornekær
,
W.
Xu
,
R.
Otero
,
E.
Lægsgaard
, and
F.
Besenbacher
,
Chem. Phys. Lett.
446
,
237
(
2007
).
16.
Y.
Ferro
,
S.
Morisset
, and
A.
Allouche
,
Chem. Phys. Lett.
478
,
42
(
2009
).
17.
M.
Khazaei
,
M. S.
Bahramy
,
A.
Ranjbar
,
H.
Mizuseki
, and
Y.
Kawazoe
,
Carbon
47
,
3306
(
2009
).
18.
D. W.
Boukhvalov
,
M. I.
Katsnelson
, and
A. I.
Lichtenstein
,
Phys. Rev. B
77
,
035427
(
2008
).
19.
S.
Casolo
,
O. M.
Løvvik
,
R.
Martinazzo
, and
G. F.
Tantardini
,
J. Chem. Phys.
130
,
054704
(
2009
).
20.
L. F.
Huang
,
M. Y.
Ni
,
Y.
Li
,
W. H.
Zhou
,
X. H.
Zheng
,
L. J.
Guo
, and
Z.
Zeng
,
Surf. Sci.
605
,
1489
(
2011
).
21.
L. F.
Huang
,
M. Y.
Ni
,
X. H.
Zheng
,
W. H.
Zhou
,
Y. G.
Li
, and
Z.
Zeng
,
J. Phys. Chem. C
114
,
22636
(
2010
).
22.
T. F.
Cao
,
L. F.
Huang
,
X. H.
Zheng
,
P. L.
Gong
, and
Z.
Zeng
,
J. Appl. Phys.
113
,
173707
(
2013
).
23.
L. F.
Huang
,
T. F.
Cao
,
P. L.
Gong
,
Z.
Zeng
, and
C.
Zhang
,
Phys. Rev. B
86
,
125433
(
2012
).
24.
Ž.
Šljivančanin
,
M.
Andersen
,
L.
Hornekær
, and
B.
Hammer
,
Phys. Rev. B
83
,
205426
(
2011
).
25.
Ž.
Šljivančanin
,
E.
Rauls
,
L.
Hornekær
,
W.
Xu
,
F.
Besenbacher
, and
B.
Hammer
,
J. Chem. Phys.
131
,
084706
(
2009
).
26.
A.
Andree
,
M. L.
Lay
,
T.
Zecho
, and
J.
Kupper
,
Chem. Phys. Lett.
425
,
99
(
2006
).
27.
E.
Gavardi
,
H. M.
Cuppen
, and
L.
Hornekær
,
Chem. Phys. Lett.
477
,
285
(
2009
).
28.
A.
Ranjbar
,
M. S.
Bahramy
,
M.
Khazaei
,
H.
Mizuseki
, and
Y.
Kawazoe
,
Phys. Rev. B
82
,
165446
(
2010
).
29.
See supplementary material at http://dx.doi.org/10.1063/1.4832040 for (1) the calculation models used in this work; (2) the LDOS and PDOS distribution of hexamer-B on 1-, 2-, and 3-layer graphene; (3) the STM images of hexamer-B simulated with different probe-graphene distance at varied scanning voltage, and (4) the STM images of other testing hydrogen clusters.
30.
J.
Tersoff
and
D. R.
Hamann
,
Phys. Rev. B
31
,
805
(
1985
).
31.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
32.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A. D.
Carso
,
S. D.
Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
A.
Kokalj
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Paolini
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
,
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
33.
M.
Hasegawa
and
K.
Nishidate
,
Phys. Rev. B
70
,
205431
(
2004
).
34.
R. E.
Mapasha
,
A. M.
Ukpong
, and
N.
Chetty
,
Phys. Rev. B
85
,
205402
(
2012
).
35.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
36.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
37.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
38.
M.
Methfessel
and
A. T.
Paxton
,
Phys. Rev. B
40
,
3616
(
1989
).

Supplementary Material

You do not currently have access to this content.