In this paper, we extend the previously introduced Post-Quantization Constraints (PQC) procedure [G. Guillon, T. Zeng, and P.-N. Roy, J. Chem. Phys.138, 184101 (2013)] to construct approximate propagators and energy estimators for different rigid body systems, namely, the spherical, symmetric, and asymmetric tops. These propagators are for use in Path Integral simulations. A thorough discussion of the underlying geometrical concepts is given. Furthermore, a detailed analysis of the convergence properties of the density as well as the energy estimators towards their exact counterparts is presented along with illustrative numerical examples. The Post-Quantization Constraints approach can yield converged results and is a practical alternative to so-called sum over states techniques, where one has to expand the propagator as a sum over a complete set of rotational stationary states [as in E. G. Noya, C. Vega, and C. McBride, J. Chem. Phys.134, 054117 (2011)] because of its modest memory requirements.

1.
D.
Marx
and
M. H.
Müser
,
J. Phys.: Condens. Matter
11
,
R117
(
1999
).
2.
S.
Wolf
and
E.
Curotto
,
J. Chem. Phys.
137
,
014109
(
2012
).
3.
E. G.
Noya
,
C.
Vega
, and
C.
McBride
,
J. Chem. Phys.
134
,
054117
(
2011
).
4.
G.
Guillon
,
T.
Zeng
, and
P.-N.
Roy
,
J. Chem. Phys.
138
,
184101
(
2013
).
5.
T. F.
Miller
and
D. E.
Manolopoulos
,
J. Chem. Phys.
123
,
154504
(
2005
).
6.
J.-P.
Ryckaert
,
G.
Ciccotti
, and
H. J.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
7.
H. C.
Andersen
,
J. Comput. Phys.
52
,
24
(
1983
).
8.
R. I.
McLachlan
,
K.
Modin
,
O.
Verdier
, and
M.
Wilkins
, “
Geometric generalisations of shake and rattle
,”
Found. Comput. Math
(published online).
9.
G.
Gallavotti
,
The Elements of Mechanics
(
Springer-Verlag
,
New York
,
1983
).
10.
R. C. T.
da Costa
,
Phys. Rev. A
23
,
1982
(
1981
).
11.
R.
Froese
and
I.
Herbst
,
Commun. Math. Phys.
220
,
489
(
2001
).
12.
C.
McBride
,
E. G.
Noya
, and
C.
Vega
,
Comput. Phys. Commun.
184
,
885
(
2013
).
13.
L. S.
Schulman
,
Techniques and Applications of Path Integration
(
Dover Publications
,
New York
,
2005
).
14.
E. G.
Noya
,
L. M.
Sesé
,
R.
Ramírez
,
C.
McBride
,
M. M.
Conde
, and
C.
Vega
,
Mol. Phys.
109
,
149
168
(
2011
).
15.
See supplementary material at http://dx.doi.org/10.1063/1.4829506 for additional derivations.
16.
A.
Viel
,
M. V.
Patel
,
P.
Niyaz
, and
K. B.
Whaley
,
Comput. Phys. Commun.
145
,
24
(
2002
).
17.
P. R.
Bunker
and
P.
Jensen
,
Molecular Symmetry and Spectroscopy
(
NRC Research Press
,
Ottawa
,
2006
).
18.
J. I.
Steinfeld
,
Molecules and Radiation: An Introduction to Modern Molecular Spectroscopy
, 2nd ed. (
Dover
,
New York
,
2005
).
19.
S. L.
Altmann
,
Rotations, Quaternions, and Double Groups
(
Clarendon Press
,
Oxford
,
1986
).
20.
S.
Habershon
,
D. E.
Manolopoulos
,
T. E.
Markland
, and
T. F.
Miller
,
Annu. Rev. Phys. Chem.
64
,
387
(
2013
).
21.
B. B.
Issack
and
P.-N.
Roy
,
J. Chem. Phys.
123
,
084103
(
2005
).
22.
B. B.
Issack
and
P.-N.
Roy
,
J. Chem. Phys.
126
,
024111
(
2007
).
23.
B. B.
Issack
and
P.-N.
Roy
,
J. Chem. Phys.
127
,
054105
(
2007
).
24.
B. B.
Issack
and
P.-N.
Roy
,
J. Chem. Phys.
127
,
144306
(
2007
).
25.
26.
D. M.
Brink
and
G. R.
Satchler
,
Angular Momentum
, 3rd ed. (
Clarendon Press
,
Oxford
,
1993
).
27.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Table of Integrals, Series, and Products
, 5th ed. (
Academic Press
,
New York
,
1994
).
28.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables
(
Dover Publications
,
New York
,
1965
).
29.
T.
Zeng
,
H.
Li
, and
P.-N.
Roy
,
J. Phys. Chem. Lett.
4
,
18
(
2013
).
30.
T.
Zeng
,
G.
Guillon
,
J. T.
Cantin
, and
P.-N.
Roy
,
J. Phys. Chem. Lett.
4
,
239
(
2013
).

Supplementary Material

You do not currently have access to this content.