We present an efficient method for reproducing CCSD(T) (i.e., the coupled-cluster method with single, double and perturbative connected triple excitations) optimized geometries and harmonic vibrational frequencies for molecular clusters with the N-body:Many-body QM:QM technique. In this work, all 1-body through N-body interactions are obtained from CCSD(T) computations, and the higher-order interactions are captured at the MP2 level. The linear expressions from the many-body expansion facilitate a straightforward evaluation of geometrical derivative properties (e.g., gradients and Hessians). For (H2O)n clusters (n = 3–7), optimized structures obtained with the 2-body:Many-body CCSD(T):MP2 method are virtually identical to CCSD(T) optimized geometries. Harmonic vibrational frequencies calculated with this 2-body:Many-body approach differ from CCSD(T) frequencies by at most a few cm−1. These deviations can be systematically reduced by including more terms from the many-body expansion at the CCSD(T) level. Maximum deviations between CCSD(T) and 3-body:Many-body CCSD(T):MP2 frequencies are typically only a few tenths of a cm−1 for the H2O clusters examined in this work. These results are obtained at a fraction of the wall time of the supermolecular CCSD(T) computation, and the approach is well-suited for parallelization on relatively modest computational hardware.

1.
H.
Fujimoto
,
N.
Koga
, and
K.
Fukui
,
J. Am. Chem. Soc.
103
,
7452
(
1981
).
2.
H.
Stoll
,
Phys. Rev. B
46
,
6700
(
1992
).
3.
H.
Stoll
,
B.
Paulus
, and
P.
Fulde
,
J. Chem. Phys.
123
,
144108
(
2005
).
4.
D.
Fedorov
,
T.
Ishida
, and
K.
Kitaura
,
J. Phys. Chem. A
109
,
2638
(
2005
).
5.
D.
Fedorov
and
K.
Kitaura
,
J. Phys. Chem. A
111
,
6904
(
2007
).
6.
D.
Fedorov
,
T.
Ishida
,
M.
Uebayasi
, and
K.
Kitaura
,
J. Phys. Chem. A
111
,
2722
(
2007
).
7.
K.
Kitaura
,
E.
Ikeo
,
T.
Asada
,
T.
Nakano
, and
M.
Uebayasi
,
Chem. Phys. Lett.
313
,
701
(
1999
).
8.
D.
Fedorov
,
L.
Slipchenko
, and
K.
Kitaura
,
J. Phys. Chem. A
114
,
8742
(
2010
).
9.
S.
Pruitt
,
D.
Fedorov
,
K.
Kitaura
, and
M.
Gordon
,
J. Chem. Theory Comput.
6
,
1
(
2010
).
10.
S.
Gadre
,
R.
Shirsat
, and
A.
Limaye
,
J. Phys. Chem.
98
,
9165
(
1994
).
11.
S.
Gadre
and
V.
Ganesh
,
J. Chem. Theory Comput.
5
,
835
(
2006
).
12.
V.
Ganesh
,
R.
Dongare
,
P.
Balanarayan
, and
S.
Gadre
,
J. Chem. Phys.
125
,
104109
(
2006
).
13.
A.
Rahalkar
,
V.
Ganesh
, and
S.
Gadre
,
J. Chem. Phys.
129
,
234101
(
2008
).
14.
A.
Rahalkar
,
M.
Katouda
,
S.
Gadre
, and
S.
Nagase
,
J. Comput. Chem.
31
,
2405
(
2010
).
15.
S.
Yeole
and
S.
Gadre
,
J. Chem. Phys.
132
,
094102
(
2010
).
16.
O.
Sode
and
S.
Hirata
,
J. Chem. Phys.
137
,
174104
(
2012
).
17.
S.
Yeole
,
N.
Sahu
, and
S.
Gadre
,
J. Phys. Chem. A
117
,
8591
(
2013
).
18.
M.
Gordon
,
D.
Fedorov
,
S.
Pruitt
, and
L.
Slipchenko
,
Chem. Rev.
112
,
632
(
2012
).
19.
G. J. O.
Beran
and
S.
Hirata
,
Phys. Chem. Chem. Phys.
14
,
7559
(
2012
).
20.
S.
Humbel
,
S.
Sieber
, and
K.
Morokuma
,
J. Chem. Phys.
105
,
1959
(
1996
).
21.
M.
Svensson
,
S.
Humbel
,
R. D. J.
Froese
,
T.
Matsubara
,
S.
Sieber
, and
K.
Morokuma
,
J. Phys. Chem.
100
,
19357
(
1996
).
22.
P.
Karadakov
and
K.
Morokuma
,
Chem. Phys. Lett.
317
,
589
(
2000
).
23.
T.
Vreven
and
K.
Morokuma
,
J. Comput. Chem.
21
,
1419
(
2000
).
24.
T.
Vreven
,
B.
Mennucci
,
C.
da Silva
,
K.
Morokuma
, and
J.
Tomasi
,
J. Chem. Phys.
115
,
62
(
2001
).
25.
T.
Vreven
,
K.
Morokuma
,
Ö.
Farkas
,
H.
Schlegel
, and
M.
Frisch
,
J. Comput. Chem.
24
,
760
(
2003
).
26.
B. W.
Hopkins
and
G. S.
Tschumper
,
J. Comput. Chem.
24
,
1563
(
2003
).
27.
B. W.
Hopkins
and
G. S.
Tschumper
,
Mol. Phys.
103
,
309
(
2005
).
28.
B. W.
Hopkins
and
G. S.
Tschumper
,
Chem. Phys. Lett.
407
,
362
(
2005
).
29.
G. S.
Tschumper
,
Chem. Phys. Lett.
427
,
185
(
2006
).
30.
A. M.
ElSohly
,
C. L.
Shaw
,
M. E.
Guice
,
B. D.
Smith
, and
G. S.
Tschumper
,
Mol. Phys.
105
,
2777
(
2007
).
31.
D. M.
Bates
,
J. R.
Smith
,
T.
Janowski
, and
G. S.
Tschumper
,
J. Chem. Phys.
135
,
044123
(
2011
).
32.
D. M.
Bates
,
J. R.
Smith
, and
G. S.
Tschumper
,
J. Chem. Theory Comput.
7
,
2753
(
2011
).
33.
D.
Hankins
,
J. W.
Moskowitz
, and
F. H.
Stillinger
,
J. Chem. Phys.
53
,
4544
(
1970
).
34.
W.
Klopper
,
M.
Quack
, and
M.
Suhm
,
Mol. Phys.
94
,
105
(
1998
).
35.
W.
Guo
,
A.
Wu
, and
X.
Xu
,
Chem. Phys. Lett.
498
,
203
(
2010
).
36.
N.
Mayhall
and
K.
Raghavachari
,
J. Chem. Theory Comput.
7
,
1336
(
2011
).
37.
N.
Mayhall
and
K.
Raghavachari
,
J. Chem. Theory Comput.
8
,
2669
(
2012
).
38.
G.
Beran
,
J. Chem. Phys.
130
,
164115
(
2009
).
39.
G.
Beran
and
K.
Nanda
,
J. Phys. Chem. Lett.
1
,
3480
(
2010
).
40.
J.
Řezáč
and
D.
Salahub
,
J. Chem. Theory Comput.
6
,
91
(
2010
).
41.
U.
Góra
,
R.
Podeszwa
,
W.
Cencek
, and
K.
Szalewicz
,
J. Chem. Phys.
135
,
224102
(
2011
).
42.
R.
Richard
and
J.
Herbert
,
J. Chem. Phys.
137
,
064113
(
2012
).
43.
S.
Xantheas
,
Chem. Phys.
258
,
225
(
2000
).
44.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
45.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
46.
F. B.
van Duijneveldt
,
J. G. C. M.
van Duijneveldt-van de Rijdt
, and
J. H.
van Lenthe
,
Chem. Rev.
94
,
1873
(
1994
).
47.
H. B.
Jansen
and
P.
Ros
,
Chem. Phys. Lett.
3
,
140
(
1969
).
48.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
49.
J.
Stanton
,
J.
Gauss
,
M.
Harding
, and
P.
Szalay
, with contributions from
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
Y. J.
Bomble
,
L.
Cheng
,
O.
Christiansen
,
M.
Heckert
,
O.
Heun
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
K.
Klein
,
W. J.
Lauderdale
,
D. A.
Matthews
,
T.
Metzroth
,
L. A.
Mück
,
D. P.
O’Neill
,
D. R.
Price
,
E.
Prochnow
,
K.
Ruud
,
F.
Schiffmann
,
W.
Schwalbach
,
S.
Stopkowicz
,
A.
Tajti
,
J.
Vázquez
,
F.
Wang
,
J. D.
Watts
, and the integral packages MOLECULE (
J.
Almlöf
and
P. R.
Taylor
), PROPS (
P. R.
Taylor
), ABACUS (
T.
Helgaker
,
H. J. Aa.
Jensen
,
P.
Jørgensen
, and
J.
Olsen
), and ECP routines by
A. V.
Mitin
and
C.
van Wüllen
, For the current version see http://www.cfour.de.
50.
C. L.
Janssen
,
I. B.
Nielsen
,
M. L.
Leininger
,
E. F.
Valeev
, and
E. T.
Seidl
, “
The massively parallel quantum chemistry program (mpqc) version 2.3.1
,” Sandia National Laboratories, Livermore, CA, USA; see http://www.mpqc.org (
2004
).
51.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
, et al, Gaussian 09, Revision B.1, Gaussian, Inc., Wallingford, CT,
2009
.
52.
See supplementary material at http://dx.doi.org/10.1063/1.4829463 for additional tables of CCSD(T) frequencies and summaries of deviations relative to CCSD(T) computations.
53.
E.
Miliordos
,
E.
Aprà
, and
S. S.
Xantheas
,
J. Chem. Phys.
139
,
114302
(
2013
).
54.
M.
Schütz
,
W.
Klopper
,
H.
Lüthi
, and
S.
Leutwyler
,
J. Chem. Phys.
103
,
6114
(
1995
).
55.
S.
Graf
,
W.
Mohr
, and
S.
Leutwyler
,
J. Chem. Phys.
110
,
7893
(
1999
).
56.
J. A.
Anderson
,
K.
Crager
,
L.
Fedoroff
, and
G. S.
Tschumper
,
J. Chem. Phys.
121
,
11023
(
2004
).
57.
C5 pentamer MP2/haDZ frequency computation performed for this work.
58.
D. M.
Bates
and
G. S.
Tschumper
,
J. Phys. Chem. A
113
,
3555
(
2009
).

Supplementary Material

You do not currently have access to this content.