The broken symmetry approach to the calculation of zero field splittings (or magnetic anisotropies) of multinuclear transition metal complexes is further developed. A procedure is suggested how to extract spin Hamiltonian parameters for anisotropic exchange from a set of broken symmetry density functional calculations. For isotropic exchange coupling constants Jij, the established procedure is retrieved, and anisotropic (or pseudodipolar) exchange coupling tensors Dij are obtained analogously. This procedure only yields the sum of the individual single-ion zero field splitting tensors Di. Therefore, a procedure based on localized orbitals has been developed to extract the individual single-ion contributions. With spin Hamiltonian parameters at hand, the zero field splittings of the individual spin multiplets are calculated by an exact diagonalization of the isotropic part, followed by a spin projection done numerically. The method is applied to the binuclear cation [LCr(OH)3CrL]3 + (L = 1,4,7-trimethyl-1,4,7-triazanonane) for which experimental zero field splittings for all low-energy spin states are known, and to the single-molecule magnet [Fe4(CH3C(CH2O)3)2(dpm)6] (Hdpm = 2,2,6,6-tetramethylheptane-3,5-dione). In both these 3d compounds, the single-ion tensors mainly come from the spin-orbit interaction. Anisotropic exchange is dominated by the spin-dipolar interaction only for the chromium compound. Despite the rather small isotropic exchange couplings in the iron compound, spin-orbit and spin-dipolar contributions to anisotropic exchange are of similar size here.

1.
L.
Noodleman
,
J. Chem. Phys.
74
,
5737
(
1981
).
2.
G.
Jonkers
,
C. A.
Delange
,
L.
Noodleman
, and
E. J.
Baerends
,
Mol. Phys.
46
,
609
(
1982
).
3.
L.
Noodleman
,
J. G.
Norman
,
J. H.
Osborne
,
A.
Aizman
, and
D. A.
Case
,
J. Am. Chem. Soc.
107
,
3418
(
1985
).
4.
L.
Noodleman
and
E. R.
Davidson
,
Chem. Phys.
109
,
131
(
1986
).
5.
I.
de P. R. Moreira
and
F.
Illas
,
Phys. Chem. Chem. Phys.
8
,
1645
(
2006
).
6.
F.
Neese
,
Coord. Chem. Rev.
253
,
526
(
2009
).
7.
E.
Ruiz
,
J.
Cano
,
S.
Alvarez
, and
P.
Alemany
,
J. Comput. Chem.
20
,
1391
(
1999
).
8.
C.
Adamo
,
V.
Barone
,
A.
Bencini
,
R.
Broer
,
M.
Filatov
,
N. M.
Harrison
,
F.
Illas
,
J. P.
Malrieu
, and
I.
de P. R. Moreira
,
J. Chem. Phys.
124
,
107101
(
2006
).
9.
E.
Ruiz
,
J.
Cano
,
S.
Alvarez
, and
V.
Polo
,
J. Chem. Phys.
124
,
107102
(
2006
).
10.
S.
Schmitt
,
P.
Jost
, and
C.
van Wüllen
,
J. Chem. Phys.
134
,
194113
(
2011
).
11.
M. R.
Pederson
and
S. N.
Khanna
,
Phys. Rev. B
60
,
9566
(
1999
).
12.
F.
Neese
,
J. Chem. Phys.
127
,
164112
(
2007
).
13.
C.
van Wüllen
,
J. Phys. Chem. A
113
,
11535
(
2009
).
14.
O.
Waldmann
,
J.
Hassmann
,
P.
Müller
,
D.
Volkmer
,
U. S.
Schubert
, and
J. M.
Lehn
,
Phys. Rev. B
58
,
3277
(
1998
).
15.
R.
Maurice
,
N.
Guihery
,
R.
Bastardis
, and
C.
de Graaf
,
J. Chem. Theory Comput.
6
,
55
(
2010
).
16.
J.
Schnack
and
O.
Wendland
,
Eur. Phys. J. B
78
,
535
(
2010
).
17.
D. D.
Dai
and
M. H.
Whangbo
,
J. Chem. Phys.
114
,
2887
(
2001
).
18.
K.
Yamaguchi
,
Y.
Takahara
,
T.
Fueno
, and
K. N.
Houk
,
Theor. Chim. Acta
73
,
337
(
1988
).
19.
K.
Yamaguchi
,
M.
Okumura
,
W.
Mori
,
J.
Maki
,
K.
Takada
,
T.
Noro
, and
K.
Tanaka
,
Chem. Phys. Lett.
210
,
201
(
1993
).
20.
S.
Yamanaka
,
M.
Okumura
,
M.
Nakano
, and
K.
Yamaguchi
,
J. Mol. Struct.: THEOCHEM
310
,
205
(
1994
).
21.
C.
van Wüllen
,
J. Chem. Phys.
130
,
194109
(
2009
).
22.
F.
Neese
,
J. Am. Chem. Soc.
128
,
10213
(
2006
).
23.
L.
Banci
,
A.
Bencini
, and
D.
Gatteschi
,
J. Am. Chem. Soc.
105
,
761
(
1983
).
24.
P.
ter Heerdt
,
M.
Stefan
,
E.
Goovaerts
,
A.
Caneschi
, and
A.
Cornia
,
J. Magn. Reson.
179
,
29
(
2006
).
25.
E. M. V.
Kessler
, Diploma thesis,
University of Kaiserslautern
,
2011
.
26.
J.
Schraut
,
A. V.
Arbuznikov
,
S.
Schinzel
, and
M.
Kaupp
,
ChemPhysChem
12
,
3170
(
2011
).
27.
J. M.
Foster
and
S. F.
Boys
,
Rev. Mod. Phys.
32
,
300
(
1960
).
28.
D. A.
Kleier
,
T. A.
Halgren
,
J. H.
Hall
, and
W. N.
Lipscomb
,
J. Chem. Phys.
61
,
3905
(
1974
).
29.
R. P.
Scaringe
,
D. J.
Hodgson
, and
W. E.
Hatfield
,
Mol. Phys.
35
,
701
(
1978
).
30.
L.
Gregoli
,
C.
Danieli
,
A. L.
Barra
,
P.
Neugebauer
,
G.
Pellegrino
,
G.
Poneti
,
R.
Sessoli
, and
A.
Cornia
,
Chem.-Eur. J.
15
,
6456
(
2009
).
31.
C.
van Wüllen
,
Chem. Phys. Lett.
219
,
8
(
1994
).
32.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
,
Chem. Phys. Lett.
162
,
165
(
1989
).
33.
M.
Häser
and
R.
Ahlrichs
,
J. Comput. Chem.
10
,
104
(
1989
).
34.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
35.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
,
J. Chem. Phys.
100
,
5829
(
1994
).
36.
C.
Peng
,
P.
Ayala
,
H. B.
Schlegel
, and
M. J.
Frisch
,
J. Comput. Chem.
17
,
49
(
1996
).
37.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford, CT,
2009
.
38.
See supplementary material at http://dx.doi.org/10.1063/1.4828727 for molecular structures, Cr and Fe ZORA basis sets, visualization, total energies, and magnetic anisotropy tensors of all broken symmetry configurations, and calculated single-ion tensors.
39.
E.
van Lenthe
,
E. J.
Baerends
, and
J. G.
Snijders
,
J. Chem. Phys.
99
,
4597
(
1993
).
40.
C.
van Wüllen
,
J. Chem. Phys.
109
,
392
(
1998
).
41.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
42.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
43.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
44.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
45.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
46.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
47.
I.
de P. R. Moreira
,
F.
Illas
, and
R. L.
Martin
,
Phys. Rev. B
65
,
155102
(
2002
).
48.
K.
Wieghardt
,
P.
Chaudhuri
,
B.
Nuber
, and
J.
Weiss
,
Inorg. Chem.
21
,
3086
(
1982
).
49.
D. E.
Bolster
,
P.
Gütlich
,
W. E.
Hatfield
,
S.
Kremer
,
E. W.
Müller
, and
K.
Wieghardt
,
Inorg. Chem.
22
,
1725
(
1983
).
50.
S.
Kremer
,
Inorg. Chem.
24
,
887
(
1985
).
51.
A.
Bencini
and
D.
Gatteschi
,
Electron Paramagnetic Resonance of Exchange Coupled Systems
(
Springer-Verlag
,
Berlin
,
1990
).
52.
A.
Cornia
,
A. C.
Fabretti
,
P.
Garrisi
,
C.
Mortalo
,
D.
Bonacchi
,
D.
Gatteschi
,
R.
Sessoli
,
L.
Sorace
,
W.
Wernsdorfer
, and
A. L.
Barra
,
Angew. Chem., Int. Ed.
43
,
1136
(
2004
).
53.
S.
Accorsi
,
A. L.
Barra
,
A.
Caneschi
,
G.
Chastanet
,
A.
Cornia
,
A. C.
Fabretti
,
D.
Gatteschi
,
C.
Mortalo
,
E.
Olivieri
,
F.
Parenti
,
P.
Rosa
,
R.
Sessoli
,
L.
Sorace
,
W.
Wernsdorfer
, and
L.
Zobbi
,
J. Am. Chem. Soc.
128
,
4742
(
2006
).
54.
J.
Ribas-Arino
,
T.
Baruah
, and
M. R.
Pederson
,
J. Chem. Phys.
123
,
044303
(
2005
).
55.
O.
Waldmann
,
Inorg. Chem.
46
,
10035
(
2007
).
56.
A.
Ozarowski
,
B. R.
Mcgarvey
, and
J. E.
Drake
,
Inorg. Chem.
34
,
5558
(
1995
).

Supplementary Material

You do not currently have access to this content.