A microscopic mechanism governing the initiating step in the high-field aging of crystalline polyethylene is proposed, based on density functional calculations and ab initio molecular dynamics simulations. It is assumed that electrons, holes, and excitons are present in the system. While the additional individual electrons or holes are not expected to lead to significant degradation, the presence of triplet excitons are concluded to be rather damaging. The electron and hole states of the exciton localize on a distorted region of polyethylene, significantly weakening nearby C–H bonds and facilitating C–H bond scission. The barrier to cleavage of the weakened C–H bonds is estimated and is comparable to the thermal energy, suggesting that this mechanism may be responsible for the degradation of polyethylene when placed under electrical stress, e.g., in high-voltage cables.

You do not currently have access to this content.