The particle-particle random phase approximation (pp-RPA) provides an approximation to the correlation energy in density functional theory via the adiabatic connection [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A88, 030501 (2013)]. It has virtually no delocalization error nor static correlation error for single-bond systems. However, with its formal O(N6) scaling, the pp-RPA is computationally expensive. In this paper, we implement a spin-separated and spin-adapted pp-RPA algorithm, which reduces the computational cost by a substantial factor. We then perform benchmark tests on the G2/97 enthalpies of formation database, DBH24 reaction barrier database, and four test sets for non-bonded interactions (HB6/04, CT7/04, DI6/04, and WI9/04). For the G2/97 database, the pp-RPA gives a significantly smaller mean absolute error (8.3 kcal/mol) than the direct particle-hole RPA (ph-RPA) (22.7 kcal/mol). Furthermore, the error in the pp-RPA is nearly constant with the number of atoms in a molecule, while the error in the ph-RPA increases. For chemical reactions involving typical organic closed-shell molecules, pp- and ph-RPA both give accurate reaction energies. Similarly, both RPAs perform well for reaction barriers and nonbonded interactions. These results suggest that the pp-RPA gives reliable energies in chemical applications. The adiabatic connection formalism based on pairing matrix fluctuation is therefore expected to lead to widely applicable and accurate density functionals.

1.
D.
Pines
and
D.
Bohm
,
Phys. Rev.
85
,
338
(
1952
).
2.
A.
Hesselmann
and
A.
Gorling
,
Mol. Phys.
109
,
2473
(
2011
).
3.
H.
Eshuis
,
J.
Bates
, and
F.
Furche
,
Theor. Chem. Acc.
131
,
1084
(
2012
).
4.
X.
Ren
,
P.
Rinke
,
C.
Joas
, and
M.
Scheffler
,
J. Mater. Sci.
47
,
7447
(
2012
).
5.
J. M.
Luttinger
and
J. C.
Ward
,
Phys. Rev.
118
,
1417
(
1960
).
6.
J.-P.
Blaizot
,
Quantum Theory of Finite Systems
(
MIT Press
,
Cambridge, MA
,
1986
).
7.
J.
Čížek
,
J. Chem. Phys.
45
,
4256
(
1966
).
8.
G. E.
Scuseria
,
T. M.
Henderson
, and
D. C.
Sorensen
,
J. Chem. Phys.
129
,
231101
(
2008
).
9.
D.
Langreth
and
J.
Perdew
,
Solid State Commun.
17
,
1425
(
1975
).
10.
O.
Gunnarsson
and
B. I.
Lundqvist
,
Phys. Rev. B
13
,
4274
(
1976
).
11.
F.
Furche
and
T. V.
Voorhis
,
J. Chem. Phys.
122
,
164106
(
2005
).
12.
H.
Eshuis
,
J.
Yarkony
, and
F.
Furche
,
J. Chem. Phys.
132
,
234114
(
2010
).
13.
X.
Ren
 et al,
New J. Phys.
14
,
053020
(
2012
).
14.
A.
Szabo
and
N. S.
Ostlund
,
J. Chem. Phys.
67
,
4351
(
1977
).
15.
H.
Eshuis
and
F.
Furche
,
J. Phys. Chem. Lett.
2
,
983
(
2011
).
16.
T. M.
Henderson
and
G. E.
Scuseria
,
Mol. Phys.
108
,
2511
(
2010
).
17.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
,
Phys. Rev. A
85
,
042507
(
2012
).
18.
F.
Furche
,
J. Chem. Phys.
129
,
114105
(
2008
).
19.
H.
Eshuis
and
F.
Furche
,
J. Chem. Phys.
136
,
084105
(
2012
).
20.
H.
van Aggelen
,
Y.
Yang
, and
W.
Yang
,
Phys. Rev. A
88
,
030501
(
2013
).
21.
D.
Peng
,
S. N.
Steinmann
,
H.
van Aggelen
, and
W.
Yang
,
J. Chem. Phys.
139
,
104112
(
2013
).
22.
G. E.
Scuseria
,
T. M.
Henderson
, and
I. W.
Bulik
,
J. Chem. Phys.
139
,
104113
(
2013
).
23.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
,
Science
321
,
792
(
2008
).
24.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
,
Phys. Rev. Lett.
102
,
066403
(
2009
).
25.
A.
Hesselmann
,
J. Chem. Phys.
134
,
204107
(
2011
).
26.
L. A.
Curtiss
,
K.
Raghavachari
,
G. W.
Trucks
, and
J. A.
Pople
,
J. Chem. Phys.
94
,
7221
(
1991
).
27.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
106
,
1063
(
1997
).
28.
J.
Zheng
,
Y.
Zhao
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
3
,
569
(
2007
).
29.
J.
Zheng
,
Y.
Zhao
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
5
,
808
(
2009
).
30.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
1
,
415
(
2005
).
31.
D. J.
Rowe
,
Rev. Mod. Phys.
40
,
153
(
1968
).
32.
P.
Ring
and
P.
Schuck
,
The Nuclear Many-Body Problem
(
Springer
,
2004
).
33.
An in-house program for QM/MM simulations (http://www.qm4d.info).
34.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
35.
CFOUR, Coupled-cluster techniques for computational chemistry, a quantum-chemical program package by
J. F.
Stanton
,
J.
Gauss
,
M. E.
Harding
,
P. G.
Szalay
with contributions from
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
Y. J.
Bomble
,
L.
Cheng
,
O.
Christiansen
,
M.
Heckert
,
O.
Heun
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Juselius
,
K.
Klein
,
W. J.
Lauderdale
,
D. A.
Matthews
,
T.
Metzroth
,
L. A.
Muck
,
D. P.
O'neill
,
D. R.
Price
,
E.
Prochnow
,
C.
Puzzarini
,
K.
Ruud
,
F.
Schiffmann
,
W.
Schwalbach
,
S.
Stopkowicz
,
A.
Tajti
,
J.
Vazquez
,
F.
Wang
,
J. D.
Watts
and the integral packages MOLECULE (
J.
Almlof
and
P. R.
Taylor
), PROPS (
P. R.
Taylor
), ABACUS (
T.
Helgaker
,
H. J. Aa.
Jensen
,
P.
Jorgensen
, and
J.
Olsen
), and ECP routines by
A. V.
Mitin
and
C.
van Wullen
. For the current version, see http://www.cfour.de.
37.
See supplementary material at http://dx.doi.org/10.1063/1.4828728 for detailed data.
38.
39.
A.
Ruzsinszky
,
J. P.
Perdew
, and
G. I.
Csonka
,
J. Chem. Theory Comput.
6
,
127
(
2010
).
40.
J.
Paier
 et al,
New J. Phys.
14
,
043002
(
2012
).
41.
H. L.
Woodcock
,
H. F.
Schaefer
, and
P. R.
Schreiner
,
J. Phys. Chem. A
106
,
11923
(
2002
).
42.
S.
Grimme
,
Angew. Chem., Int. Ed.
45
,
4460
(
2006
).
43.
M. D.
Wodrich
,
C.
Corminboeuf
, and
P. v. R.
Schleyer
,
Org. Lett.
8
,
3631
(
2006
).
44.
S. N.
Steinmann
,
M.
Wodrich
, and
C.
Corminboeuf
,
Theor. Chem. Acc.
127
,
429
(
2010
).
45.
J.-W.
Song
,
T.
Tsuneda
,
T.
Sato
, and
K.
Hirao
,
Org. Lett.
12
,
1440
(
2010
).
46.
S.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
47.
W.
Cencek
and
K.
Szalewicz
,
J. Chem. Phys.
139
,
024104
(
2013
).

Supplementary Material

You do not currently have access to this content.