Coupled cluster (CC) methods provide highly accurate predictions of molecular properties, but their high computational cost has precluded their routine application to large systems. Fortunately, recent computational developments in the ACES III program by the Bartlett group [the OED/ERD atomic integral package, the super instruction processor, and the super instruction architecture language] permit overcoming that limitation by providing a framework for massively parallel CC implementations. In that scheme, we are further extending those parallel CC efforts to systematically predict the three main electron spin resonance (ESR) tensors (A-, g-, and D-tensors) to be reported in a series of papers. In this paper inaugurating that series, we report our new ACES III parallel capabilities that calculate isotropic hyperfine coupling constants in 38 neutral, cationic, and anionic radicals that include the 11B, 17O, 9Be, 19F, 1H, 13C, 35Cl, 33S,14N, 31P, and 67Zn nuclei. Present parallel calculations are conducted at the Hartree-Fock (HF), second-order many-body perturbation theory [MBPT(2)], CC singles and doubles (CCSD), and CCSD with perturbative triples [CCSD(T)] levels using Roos augmented double- and triple-zeta atomic natural orbitals basis sets. HF results consistently overestimate isotropic hyperfine coupling constants. However, inclusion of electron correlation effects in the simplest way via MBPT(2) provides significant improvements in the predictions, but not without occasional failures. In contrast, CCSD results are consistently in very good agreement with experimental results. Inclusion of perturbative triples to CCSD via CCSD(T) leads to small improvements in the predictions, which might not compensate for the extra computational effort at a non-iterative N7-scaling in CCSD(T). The importance of these accurate computations of isotropic hyperfine coupling constants to elucidate experimental ESR spectra, to interpret spin-density distributions, and to characterize and identify radical species is illustrated with our results from large organic radicals. Those include species relevant for organic chemistry, petroleum industry, and biochemistry, such as the cyclo-hexyl, 1-adamatyl, and Zn-porphycene anion radicals, inter alia.

1.
R. E.
Moss
,
Advanced Molecular Quantum Mechanics: An Introduction to Relativistic Quantum Mechanics and the Quantum Theory of Radiation
(
Chapman and Hall
,
1973
).
2.
S. P. A.
Sauer
,
Molecular Electromagnetism: A Computational Chemistry Approach
(
OUP
,
Oxford
,
2011
).
3.
G. W. F.
Drake
,
Springer Handbook of Atomic, Molecular, and Optical Physics
(
Springer
,
2006
).
4.
M.
Kaupp
,
M.
Bühl
, and
V. G.
Malkin
,
Calculation of NMR and EPR Parameters
(
Wiley
,
2006
).
5.
A.
Lund
,
S.
Shimada
, and
M.
Shiotani
,
Principles and Applications of Esr Spectroscopy
(
Springer London
,
Limited
,
2010
).
6.
S. A.
Perera
,
J. D.
Watts
, and
R. J.
Bartlett
,
J. Chem. Phys.
100
,
1425
(
1994
).
7.
F.
Gerson
and
W.
Huber
,
Electron Spin Resonance Spectroscopy of Organic Radicals
(
Wiley
,
2006
).
8.
A.
Abragam
and
B.
Bleaney
,
Electron Paramagnetic Resonance of Transition Ions
(
OUP
,
Oxford
,
2012
).
9.
W.
Weltner
,
Magnetic Atoms Amd Molecules
(
Dover Publications
,
1989
).
10.
J.
Grunenberg
,
Computational Spectroscopy
(
Wiley
,
2011
).
11.
F.
Neese
,
Coord. Chem. Rev.
253
,
526
(
2009
).
12.
T.
Helgaker
,
S.
Coriani
,
P.
Jørgensen
,
K.
Kristensen
,
J.
Olsen
, and
K.
Ruud
,
Chem. Rev.
112
,
543
(
2012
).
13.
T.
Helgaker
,
M.
Jaszuński
, and
K.
Ruud
,
Chem. Rev.
99
,
293
(
1999
).
14.
J.
Leszczynski
,
Handbook of Computational Chemistry
(
Springer
,
2011
).
15.
R.
Improta
and
V.
Barone
,
Chem. Rev.
104
,
1231
(
2004
).
16.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
USA
,
1989
).
17.
P.
Verma
,
A.
Perera
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
524
,
10
(
2012
).
18.
P.
Verma
and
R. J.
Bartlett
,
J. Chem. Phys.
136
,
044105
(
2012
).
19.
P.
Verma
and
R. J.
Bartlett
,
J. Chem. Phys.
137
,
134102
(
2012
).
20.
J. P.
Perdew
and
A.
Ruzsinszky
,
Int. J. Quantum Chem.
110
,
2801
(
2010
).
21.
J. P.
Perdew
,
A.
Ruzsinszky
,
L. A.
Constantin
,
J.
Sun
, and
G. I.
Csonka
,
J. Chem. Theory Comput.
5
,
902
(
2009
).
22.
A. J.
Cohen
,
P.
Mori-Sanchez
, and
W.
Yang
,
J. Chem. Phys.
129
,
121104
(
2008
).
23.
A.
Ruzsinszky
,
J. P.
Perdew
,
G. I.
Csonka
,
O. A.
Vydrov
, and
G. E.
Scuseria
,
J. Chem. Phys.
126
,
104102
(
2007
).
24.
M.
Lundberg
and
P. E. M.
Siegbahn
,
J. Chem. Phys.
122
,
224103
(
2005
).
25.
O. A.
Vydrov
and
G. E.
Scuseria
,
J. Chem. Phys.
125
,
234109
(
2006
).
26.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
,
Science
321
,
792
(
2008
).
27.
P.
Verma
and
J.
Autschbach
,
J. Chem. Theory Comput.
9
,
1932
(
2013
).
28.
P.
Verma
and
J.
Autschbach
,
J. Chem. Theory Comput.
9
,
1052
(
2013
).
29.
F.
Aquino
,
N.
Govind
, and
J.
Autschbach
,
J. Chem. Theory Comput.
7
,
3278
(
2011
).
30.
L.
Hermosilla
,
J. M.
Garcia de la Vega
,
C.
Sieiro
, and
P.
Calle
,
J. Chem. Theory Comput.
7
,
169
(
2011
).
31.
L.
Hermosilla
,
P.
Calle
,
J. M.
García de la Vega
, and
C.
Sieiro
,
J. Phys. Chem. A
109
,
1114
(
2005
).
32.
S.
Kossmann
,
B.
Kirchner
, and
F.
Neese
,
Mol. Phys.
105
,
2049
(
2007
).
33.
V.
Barone
,
P.
Cimino
, and
E.
Stendardo
,
J. Chem. Theory Comput.
4
,
751
(
2008
).
34.
E. D.
Hedegård
,
J.
Kongsted
, and
S. P. A.
Sauer
,
J. Chem. Theory Comput.
9
,
2380
(
2013
).
35.
M.
Munzarová
and
M.
Kaupp
,
J. Phys. Chem. A
103
,
9966
(
1999
).
36.
R. J.
Bartlett
and
M.
Musiał
,
Rev. Mod. Phys.
79
,
291
(
2007
).
37.
S. A.
Perera
,
L. M.
Salemi
, and
R. J.
Bartlett
,
J. Chem. Phys.
106
,
4061
(
1997
).
38.
A.
Rogowska
,
S.
Kuhl
,
R.
Schneider
,
A.
Walcarius
, and
B.
Champagne
,
Phys. Chem. Chem. Phys.
9
,
828
(
2007
).
39.
M.
Filatov
and
D.
Cremer
,
J. Chem. Phys.
121
,
5618
(
2004
).
40.
V.
Lotrich
,
N.
Flocke
,
M.
Ponton
,
A. D.
Yau
,
A.
Perera
,
E.
Deumens
, and
R. J.
Bartlett
,
J. Chem. Phys.
128
,
194104
(
2008
).
41.
M. S.
Gordon
and
M. W.
Schmidt
, in
Theory and Applications of Computational Chemistry
, edited by
C. E.
Dykstra
,
G.
Frenking
,
K. S.
Kim
, and
G. E.
Scuseria
(
Elsevier
,
Amsterdam
,
2005
), p.
1167
.
42.
M.
Valiev
,
E. J.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
H. J. J.
Van Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
,
T. L.
Windus
, and
W. A.
de Jong
,
Comput. Phys. Commun.
181
,
1477
(
2010
).
43.
V.
Lotrich
,
N.
Flocke
,
M.
Ponton
,
B. A.
Sanders
,
E.
Deumens
,
R. J.
Bartlett
, and
A.
Perera
, in
Proceedings of the 23rd International Conference on Supercomputing
(
ACM
,
Yorktown Heights, NY
,
2009
), p.
523
.
44.
N.
Flocke
and
V.
Lotrich
,
J. Comput. Chem.
29
,
2722
(
2008
).
45.
E.
Deumens
,
V. F.
Lotrich
,
A.
Perera
,
M. J.
Ponton
,
B. A.
Sanders
, and
R. J.
Bartlett
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
895
(
2011
).
46.
V. F.
Lotrich
,
J. M.
Ponton
,
A. S.
Perera
,
E.
Deumens
,
R. J.
Bartlett
, and
B. A.
Sanders
,
Mol. Phys.
108
,
3323
(
2010
).
47.
R. J.
Bartlett
and
D. M.
Silver
,
Int. J. Quantum Chem.
9
,
183
(
1975
).
48.
K. A.
Brueckner
,
Phys. Rev.
97
,
1353
(
1955
).
49.
G. D.
Purvis
 III
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
50.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
51.
R. J.
Bartlett
,
J. D.
Watts
,
S. A.
Kucharski
, and
J.
Noga
,
Chem. Phys. Lett.
165
,
513
(
1990
).
52.
P.
Pyykkö
,
Theor. Chem. Acc.
103
,
214
(
2000
).
53.
J.
Autschbach
,
J. Chem. Phys.
136
,
150902
(
2012
).
54.
M.
Langgård
and
J.
Spanget-Larsen
,
J. Mol. Struct.: THEOCHEM
431
,
173
(
1998
).
55.
X.
Chen
,
Z.
Rinkevicius
,
Z.
Cao
,
K.
Ruud
, and
H.
Ågren
,
Phys. Chem. Chem. Phys.
13
,
696
(
2011
).
56.
R. A.
Frosch
and
H. M.
Foley
,
Phys. Rev.
88
,
1337
(
1952
).
57.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory
(
Cambridge University Press
,
2009
).
58.
E. A.
Salter
,
G. W.
Trucks
, and
R. J.
Bartlett
,
J. Chem. Phys.
90
,
1752
(
1989
).
59.
G.
Fitzgerald
,
R. J.
Harrison
, and
R. J.
Bartlett
,
J. Chem. Phys.
85
,
5143
(
1986
).
60.
L.
Adamowicz
,
W. D.
Laidig
, and
R. J.
Bartlett
,
Int. J. Quantum Chem.
26
,
245
(
1984
).
61.
H.
Koch
and
P.
Jorgensen
,
J. Chem. Phys.
93
,
3333
(
1990
).
62.
J. D.
Watts
,
J.
Gauss
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
200
,
1
(
1992
).
63.
J.
Gauss
,
J. F.
Stanton
, and
R. J.
Bartlett
,
J. Chem. Phys.
95
,
2623
(
1991
).
64.
A.
Halkier
,
H.
Koch
,
O.
Christiansen
,
P.
Jorgensen
, and
T.
Helgaker
,
J. Chem. Phys.
107
,
849
(
1997
).
65.
A. C.
Scheiner
,
G. E.
Scuseria
,
J. E.
Rice
,
T. J.
Lee
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
87
,
5361
(
1987
).
66.
E. A.
Salter
,
G. W.
Trucks
,
G.
Fitzgerald
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
141
,
61
(
1987
).
67.
G. W.
Trucks
,
E. A.
Salter
,
C.
Sosa
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
147
,
359
(
1988
).
68.
See supplementary material at http://dx.doi.org/10.1063/1.4827298 for the structures and atoms’ numberings of the molecules in test set II.
69.
M. M.
Francl
,
W. J.
Pietro
,
W. J.
Hehre
,
J. S.
Binkley
,
M. S.
Gordon
,
D. J.
DeFrees
, and
J. A.
Pople
,
J. Chem. Phys.
77
,
3654
(
1982
).
70.
P. C.
Hariharan
and
J. A.
Pople
,
Theor. Chim. Acta
28
,
213
(
1973
).
71.
P.-O.
Widmark
,
B. J.
Persson
, and
B. O.
Roos
,
Theor. Chim. Acta
79
,
419
(
1991
).
72.
P.-O.
Widmark
,
P.-Å.
Malmqvist
, and
B. O.
Roos
,
Theor. Chim. Acta
77
,
291
(
1990
).
73.
R.
Pou-Amerigo
,
M.
Merchan
,
I.
Nebot-Gil
,
P.-O.
Widmark
, and
B.
Roos
,
Theor. Chim. Acta
92
,
149
(
1995
).
74.
W. C.
Danen
and
T. T.
Kensler
,
J. Am. Chem. Soc.
92
,
5235
(
1970
).
75.
F. A.
Neugebauer
,
S.
Bamberger
, and
W. R.
Groh
,
Chem. Ber.
108
,
2406
(
1975
).
76.
R. W.
Fessenden
and
R. H.
Schuler
,
J. Chem. Phys.
39
,
2147
(
1963
).
77.
P. J.
Krusic
,
T. A.
Rettig
, and
P. v. R.
Schleyer
,
J. Am. Chem. Soc.
94
,
995
(
1972
).
78.
J.
Schluepmann
,
M.
Huber
,
M.
Toporowicz
,
M.
Plato
,
M.
Koecher
,
E.
Vogel
,
H.
Levanon
, and
K.
Moebius
,
J. Am. Chem. Soc.
112
,
6463
(
1990
).
79.
T.
Helgaker
,
M.
Jaszunski
,
K.
Ruud
, and
A.
Go'rska
,
Theor. Chem. Acc.
99
,
175
(
1998
).
80.
D. M.
Chipman
,
Theor. Chim. Acta
76
,
73
(
1989
).
81.
V.
Barone
, in
Recent Advances in Density Functional Methods
, edited by
D. P.
Chong
(
World Scientific
,
Singapore
,
1995
), Part 1, p.
287
.
82.
S.
Fau
and
R. J.
Bartlett
,
J. Phys. Chem. A
107
,
6648
(
2003
).
83.
D.
Feller
and
E. R.
Davidson
,
J. Chem. Phys.
88
,
7580
(
1988
).
84.
J.
Kong
and
R. J.
Boyd
,
J. Chem. Phys.
107
,
6270
(
1997
).
85.
J. F.
Stanton
,
J. Chem. Phys.
101
,
371
(
1994
).
86.
L. B.
Knight
,
B. W.
Gregory
,
S. T.
Cobranchi
,
D.
Feller
, and
E. R.
Davidson
,
J. Am. Chem. Soc.
109
,
3521
(
1987
).
87.
C. E.
Barnes
,
J. M.
Brown
,
A.
Carrington
,
J.
Pinkstone
,
T. J.
Sears
, and
P. J.
Thistlethwaite
,
J. Mol. Spectrosc.
72
,
86
(
1978
).
88.
L. B.
Knight
 Jr.
,
M. B.
Wise
,
A. G.
Childers
,
E. R.
Davidson
, and
W. R.
Daasch
,
J. Chem. Phys.
73
,
4198
(
1980
).
89.
L. B.
Knight
 Jr.
and
J.
Steadman
,
J. Chem. Phys.
78
,
5940
(
1983
).
90.
L. B.
Knight
 Jr.
,
J. M.
Brom
 Jr.
, and
W.
Weltner
 Jr.
,
J. Chem. Phys.
56
,
1152
(
1972
).
91.
G. W.
Hills
and
J. M.
Cook
,
J. Mol. Spectrosc.
94
,
456
(
1982
).
92.
T. C.
Steimle
,
D. R.
Woodward
, and
J. M.
Brown
,
J. Chem. Phys.
85
,
1276
(
1986
).
93.
D. M.
Chipman
,
J. Chem. Phys.
78
,
3112
(
1983
).
94.
L. B.
Knight
 Jr.
,
J.
Steadman
,
P. K.
Miller
,
D. E.
Bowman
,
E. R.
Davidson
, and
D.
Feller
,
J. Chem. Phys.
80
,
4593
(
1984
).
95.
R. W.
Fessenden
and
R. H.
Schuler
,
J. Chem. Phys.
43
,
2704
(
1965
).
96.
J. V.
Martinez de Pinillos
and
W.
Weltner
 Jr.
,
J. Chem. Phys.
65
,
4256
(
1976
).
97.
K. R.
Leopold
,
K. M.
Evenson
,
E. R.
Comben
, and
J. M.
Brown
,
J. Mol. Spectrosc.
122
,
440
(
1987
).
98.
J. A.
Coxon
,
K. V. L. N.
Sastry
,
J. A.
Austin
, and
D. H.
Levy
,
Can. J. Phys.
57
,
619
(
1979
).
99.
S.
Yamamoto
and
S.
Saito
,
J. Chem. Phys.
96
,
4157
(
1992
).
100.
M.
Tanimoto
and
H.
Uehara
,
Mol. Phys.
25
,
1193
(
1973
).
101.
L. B.
Knight
 Jr.
,
M.
Winiski
,
P.
Miller
,
C. A.
Arrington
, and
D.
Feller
,
J. Chem. Phys.
91
,
4468
(
1989
).
102.
L. B.
Knight
 Jr.
and
J.
Steadman
,
J. Chem. Phys.
77
,
1750
(
1982
).
103.
J. M.
Brom
 Jr.
and
W.
Weltner
 Jr.
,
J. Chem. Phys.
64
,
3894
(
1976
).
104.
L. B.
Knight
 Jr.
,
D. J.
Tyler
,
P.
Kudelko
,
J. B.
Lyon
, and
A. J.
McKinley
,
J. Chem. Phys.
99
,
7384
(
1993
).
105.
R. W.
Fessenden
,
J. Phys. Chem.
71
,
74
(
1967
).
106.
B. R.
Bicknell
,
W. R. M.
Graham
, and
W.
Weltner
 Jr.
,
J. Chem. Phys.
64
,
3319
(
1976
).
107.
M.
Jinguji
,
C. A.
McDowell
, and
P.
Raghunathan
,
J. Chem. Phys.
61
,
1489
(
1974
).
108.
R. W.
Holmberg
,
J. Chem. Phys.
51
,
3255
(
1969
).
109.
M.
Staikova
,
M.
Peric
,
B.
Engels
, and
S. D.
Peyerimhoff
,
J. Mol. Spectrosc.
166
,
423
(
1994
).
110.
F. J.
Adrian
,
B. F.
Kim
, and
J.
Bohandy
,
J. Chem. Phys.
82
,
1804
(
1985
).
111.
K.
Shimokoshi
,
J.
Fujisawa
,
K.
Nakamura
,
S.
Sato
, and
T.
Shida
,
Chem. Phys. Lett.
99
,
483
(
1983
).
112.
H.
Habara
,
S.
Yamamoto
,
C.
Ochsenfeld
,
M.
Head-Gordon
,
R. I.
Kaiser
, and
Y. T.
Lee
,
J. Chem. Phys.
108
,
8859
(
1998
).
113.
K. F.
Preston
,
J. P. B.
Sandall
, and
L. H.
Sutcliffe
,
Magn. Reson. Chem.
26
,
755
(
1988
).
114.
A. M.
Ihrig
,
P. R.
Jones
,
I. N.
Jung
,
R. V.
Lloyd
,
J. L.
Marshall
, and
D. E.
Wood
,
J. Am. Chem. Soc.
97
,
4477
(
1975
).
115.
P. J.
Krusic
and
J. K.
Kochi
,
J. Am. Chem. Soc.
90
,
7155
(
1968
).
116.
S. F.
Nelsen
,
R. T.
Landis
,
L. H.
Kiehle
, and
T. H.
Leung
,
J. Am. Chem. Soc.
94
,
1610
(
1972
).
117.
M. T.
Melchior
and
A. H.
Maki
,
J. Chem. Phys.
34
,
471
(
1961
).
118.
B. M.
Latta
and
R. W.
Taft
,
J. Am. Chem. Soc.
89
,
5172
(
1967
).

Supplementary Material

You do not currently have access to this content.