Monte Carlo simulations and integral equation theory were used to study the thermodynamics and structure of particles interacting through the smooth version of Stell-Hemmer interaction. We checked the possibility that a fluid with a core-softened potential reproduces anomalies of liquid water such as the density anomaly, the minimum in the isothermal compressibility as a function of temperature, and others. Critical points of the fluid were also determined. We showed that a potential with two characteristic distances is sufficient for the system to exhibit water-like behavior and anomalies, including the famous density maximum. We also showed that some versions of the integral equation theory completely fail to predict structure of such system, while others only predict it qualitatively.

1.
D.
Eisenberg
and
W.
Kauzmann
,
The Structure and Properties of Water
(
Oxford University Press
,
Oxford
,
1969
).
2.
F.
Franks
,
Water: A Comprehensive Treatise
(
Plenum
,
New York
,
1972
), Vol. -7.
4.
R.
Sharma
,
S. N.
Chakraborty
, and
C.
Chakravarty
,
J. Chem. Phys.
125
,
204501
(
2006
).
5.
P. H.
Poole
,
M.
Hemmati
, and
C. A.
Angell
,
Phys. Rev. Lett.
79
,
2281
(
1997
).
6.
M. S.
Shell
,
P. G.
Debenedetti
, and
A. Z.
Panagiotopoulos
,
Phys. Rev. E
66
,
056703
(
2002
).
7.
P. C.
Hemmer
and
G.
Stell
,
Phys. Rev. Lett.
24
,
1284
(
1970
).
8.
A. B.
de Oliveira
,
P. A.
Netz
, and
M. C.
Barbosa
,
Eur. Phys. J. B
64
,
481
(
2008
).
9.
S.
Sastry
and
C. A.
Angell
,
Nature Mater.
2
,
739
(
2003
).
10.
C. A.
Angell
,
R. D.
Bressel
,
M.
Hemmati
,
E. J.
Sare
, and
J. C.
Tucker
,
Phys. Chem. Chem. Phys.
2
,
1559
(
2000
).
11.
K. K.
Mon
,
N. W.
Ashcroft
, and
G. V.
Chester
,
Phys. Rev. B
19
,
5103
(
1979
).
12.
D.
Levesque
and
J. J.
Weis
,
Phys. Lett. A
60
,
473
(
1977
).
13.
P. T.
Cummings
and
G.
Stell
,
Mol. Phys.
43
,
1267
(
1981
).
14.
A.
Voronel
,
I.
Paperno
,
S.
Rabinovich
, and
E.
Lapina
,
Phys. Rev. Lett.
50
,
247
(
1983
).
15.
E.
Velasco
,
L.
Mederos
,
G.
Navascues
,
P. C.
Hemmer
, and
G.
Stell
,
Phys. Rev. Lett.
85
,
122
(
2000
).
16.
P. H.
Poole
,
F.
Sciortino
,
U.
Essmann
, and
H. E.
Stanley
,
Nature (London)
360
,
324
(
1992
).
17.
S. V.
Buldyrev
,
G.
Franzese
,
N.
Giovambattista
,
G.
Malescio
,
M. R.
Sadr-Lahijany
,
A.
Scala
,
A.
Skibinsky
, and
H. E.
Stanley
,
Physica A
304
,
23
(
2002
).
18.
A. M.
Almudallal
,
S. V.
Buldyrev
, and
I.
Saika-Voivod
,
J. Chem. Phys.
137
,
034507
(
2012
).
19.
G.
Franzese
,
G.
Malescio
,
A.
Skibinsky
,
S. V.
Buldyrev
, and
H. E.
Stanley
,
Nature (London)
409
,
692
(
2001
).
20.
M. R.
Sadr-Lahijany
,
A.
Scala
,
S. V.
Buldyrev
, and
H. E.
Stanley
,
Phys. Rev. Lett.
81
,
4895
(
1998
).
21.
M. R.
Sadr-Lahijany
,
A.
Scala
,
S. V.
Buldyrev
, and
H. E.
Stanley
,
Phys. Rev. E
60
,
6714
(
1999
).
22.
A.
Scala
,
M. Reza
Sadr-Lahijany
,
N.
Giovambattista
,
S. V.
Buldyrev
, and
H. E.
Stanley
,
Phys. Rev. E
63
,
041202
(
2001
).
23.
D.
Frenkel
and
B.
Smit
,
Molecular Simulation: From Algorithms to Applications
(
Academic Press
,
New York
,
2000
).
24.
K. A. T.
Silverstein
,
A. D. J.
Haymet
, and
K. A.
Dill
,
J. Am. Chem. Soc.
120
,
3166
(
1998
).
25.
L. S.
Ornstein
and
F.
Zernike
,
Proc. Akad. Sci. (Amsterdam)
17
,
793
(
1914
).
26.
T.
Morita
and
K.
Hiroike
,
Prog. Theor. Phys.
23
,
829
(
1960
).
27.
J. K.
Percus
and
G. J.
Yevick
,
Phys. Rev.
110
,
1
(
1958
).
28.
J. K.
Percus
,
Phys. Rev. Lett.
8
,
462
(
1962
).
29.
A.
Kovalenko
and
F.
Hirata
,
J. Chem. Phys.
110
,
10095
(
1999
).
30.
F. J.
Rogers
and
D. A.
Young
,
Phys. Rev. A
30
,
999
(
1984
).
31.
S. W.
Rick
and
A. D. J.
Haymet
,
J. Chem. Phys.
90
,
1188
(
1989
).
32.
J. D.
Talman
,
J. Comput. Phys.
29
,
35
(
1978
).
33.
A.
Lang
,
G.
Kahl
,
C. N.
Likos
,
H.
Lowen
, and
M.
Watzlawek
,
J. Phys.: Condens. Matter
11
,
10143
(
1999
).
You do not currently have access to this content.