We derive and analyze a hierarchy of approximations to the strongly correlated limit of the Hohenberg-Kohn functional. These “density representability approximations” are obtained by first noting that in the strongly correlated limit, N-representability of the pair density reduces to the requirement that the pair density must come from a symmetric N-point density. One then relaxes this requirement to the existence of a representing symmetric k-point density with k < N. The approximate energy can be computed by simulating a fictitious k-electron system. We investigate the approximations by deriving analytically exact results for a 2-site model problem, and by incorporating them into a self-consistent Kohn-Sham calculation for small atoms. We find that the low order representability conditions already capture the main part of the correlations.

1.
D.
Aldous
,
Exchangeability and Related Topics
,
Lecture Notes in Mathematics
Volume
1117
(
Springer
,
1985
).
2.
P. W.
Ayers
and
E. R.
Davidson
, “
Necessary conditions for the N-representability of pair distribution functions
,”
Int. J. Quantum Chem.
106
,
1487
1498
(
2006
).
3.
T.
Bally
and
G. Narahari
Sastry
, “
Incorrect dissociation behavior of radical ions in density functional calculations
,”
J. Phys. Chem. A
101
,
7923
7925
(
1997
).
4.
G.
Buttazzo
,
L.
De Pascale
, and
P.
Gori-Giorgi
, “
Optimal-transport formulation of electronic density-functional theory
,”
Phys. Rev. A
85
,
062502
(
2012
).
5.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
, “
Challenges for density functional theory
,”
Chem. Rev.
112
,
289
320
(
2012
).
6.
A. J.
Coleman
and
V. I.
Yukalov
,
Reduced Density Matrices: Coulson's Challenge
(
Springer
,
2000
).
7.
C.
Cotar
,
G.
Friesecke
, and
C.
Klüppelberg
, “
Smoothing of transport plans with fixed marginals and rigorous semiclassical limit of the Hohenberg-Kohn functional
” (unpublished).
8.
C.
Cotar
,
G.
Friesecke
, and
B.
Pass
, “
Infinite-body optimal transport with Coulomb cost
,”
Comm. Math. Phys.
(submitted) preprint arXiv:1307.6540.
9.
C.
Cotar
,
G.
Friesecke
, and
C.
Klüppelberg
, “
Density functional theory and optimal transportation with Coulomb cost
,” preprint arXiv:1104.0603 (
2011
);
C.
Cotar
,
G.
Friesecke
, and
C.
Klüppelberg
,
Commun. Pure Appl. Math.
66
,
548
599
(
2013
).
10.
E. R.
Davidson
, “
N-representability of the electron pair density
,”
Chem. Phys. Lett.
246
,
209
213
(
1995
).
11.
B.
de Finetti
, “
Sulla proseguibilità di processi aleatori scambiabili
,”
Rend. Mat. Trieste
1
,
53
67
(
1969
); see http://hdl.handle.net/10077/6642.
12.
P.
Diaconis
and
D.
Freedman
, “
Finite exchangeable sequences
,”
Ann. Probab.
8
,
745
764
(
1980
).
13.
G.
Friesecke
, “
Pair correlations and exchange phenomena in the free electron gas
,”
Commun. Math. Phys.
184
,
143
171
(
1997
).
14.
G.
Friesecke
and
B.
Goddard
, “
Asymptotics-based CI models for atoms: Properties, exact solution of a minimal model for Li to Ne, and application to atomic spectra
,”
Multiscale Model. Simul.
7
,
1876
1897
(
2009
).
15.
W.
Gangbo
and
R.
McCann
, “
The geometry of optimal transportation
,”
Acta Math.
177
,
113
161
(
1996
).
16.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
17.
K.
Lee
,
É. D.
Murray
,
L.
Kong
,
B. I.
Lundqvist
, and
D. C.
Langreth
, “
Higher-accuracy van der Waals density functional
,”
Phys. Rev. B
82
,
081101
R
(
2010
).
18.
M.
Levy
and
J. P.
Perdew
, “
Hellmann-Feynman, virial, and scaling requisites for the exact universal density functionals. Shape of the correlation potential and diamagnetic susceptibility for atoms
,”
Phys. Rev. A
32
,
2010
2021
(
1985
).
19.
E. H.
Lieb
and
B.
Simon
, “
The Thomas-Fermi theory of atoms, molecules and solids
,”
Adv. Math.
23
,
22
116
(
1977
).
20.
F.
Malet
and
P.
Gori-Giorgi
, “
Strong correlation in Kohn-Sham density functional theory
,”
Phys. Rev. Lett.
109
,
246402
(
2012
).
21.
F.
Malet
,
A.
Mirtschink
,
J. C.
Cremon
,
S. M.
Reimann
, and
P.
Gori-Giorgi
, “
Kohn-Sham density functional theory for quantum wires in arbitrary correlation regimes
,”
Phys. Rev. B
87
,
115146
(
2013
).
22.
J. M. L.
Martin
,
J.
El-Yazal
, and
J.-P.
François
, “
On the structure and vibrational frequencies of C24
,”
Chem. Phys. Lett.
255
,
7
14
(
1996
).
23.
D. A.
Mazziotti
,
Reduced-Density-Matrix Mechanics: With Application to Many-Electron Atoms and Molecules
,
Advances in Chemical Physics
Volume
134
(
Wiley
,
2007
).
24.
C. B.
Mendl
and
L.
Lin
, “
Kantorovich dual solution for strictly correlated electrons in atoms and molecules
,”
Phys. Rev. B
87
,
125106
(
2013
).
25.
B.
Pass
, “
On the local structure of optimal measures in the multi-marginal optimal transportation problem
,”
Calculus Var. Partial Differ. Equ.
43
,
529
536
(
2012
).
26.
B.
Pass
, “
Remarks on the semi-classical Hohenberg-Kohn functional
,” preprint arXiv:1211.2766 (
2012
).
27.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
28.
E.
Räsänen
,
M.
Seidl
, and
P.
Gori-Giorgi
, “
Strictly correlated uniform electron droplets
,”
Phys. Rev. B
83
,
195111
(
2011
).
29.
M.
Seidl
, “
Strong-interaction limit of density-functional theory
,”
Phys. Rev. A
60
,
4387
4395
(
1999
).
30.
M.
Seidl
,
P.
Gori-Giorgi
, and
A.
Savin
, “
Strictly correlated electrons in density-functional theory: A general formulation with applications to spherical densities
,”
Phys. Rev. A
75
,
042511
(
2007
).
31.
M.
Seidl
,
J. P.
Perdew
, and
M.
Levy
, “
Strictly correlated electrons in density-functional theory
,”
Phys. Rev. A
59
,
51
54
(
1999
).
32.
C.
Villani
,
Optimal Transport: Old and New
(
Springer
,
2008
).
33.
S.
Yanagisawa
,
T.
Tsuneda
, and
K.
Hirao
, “
An investigation of density functionals: The first-row transition metal dimer calculations
,”
J. Chem. Phys.
112
(
2
),
545
553
(
2000
).
You do not currently have access to this content.