The lowest-energy singlet (1 1A′) and two lowest-energy triplet (1 3A′ and 1 3A″) electronic states of CO2 are characterized using dynamically weighted multireference configuration interaction (dw-MRCI+Q) electronic structure theory calculations extrapolated to the complete basis set (CBS) limit. Global analytic representations of the dw-MRCI+Q/CBS singlet and triplet surfaces and of their CASSCF/aug-cc-pVQZ spin–orbit coupling surfaces are obtained via the interpolated moving least squares (IMLS) semiautomated surface fitting method. The spin-forbidden kinetics of the title reaction is calculated using the coupled IMLS surfaces and coherent switches with decay of mixing non-Born–Oppenheimer molecular dynamics. The calculated spin-forbidden association rate coefficient (corresponding to the high pressure limit of the rate coefficient) is 7–35 times larger at 1000–5000 K than the rate coefficient used in many detailed chemical models of combustion. A dynamical analysis of the multistate trajectories is presented. The trajectory calculations reveal direct (nonstatistical) and indirect (statistical) spin-forbidden reaction mechanisms and may be used to test the suitability of transition-state-theory-like statistical methods for spin-forbidden kinetics. Specifically, we consider the appropriateness of the “double passage” approximation, of assuming statistical distributions of seam crossings, and of applications of the unified statistical model for spin-forbidden reactions.

1.
M. T.
Allen
,
R. A.
Yetter
, and
F. L.
Dryer
,
Combust. Flame
109
,
449
(
1997
).
2.
J.
Troe
,
Fifteenth Symp. (Int.) Combust.
15
,
667
(
1975
).
3.
P. R.
Westmoreland
,
J. B.
Howard
,
J. P.
Longwell
, and
A. M.
Dean
,
AIChE J.
32
,
1971
(
1986
).
4.
S. G.
Davis
,
A. V.
Joshi
,
H.
Wang
, and
F.
Egolfopoulos
,
Proc. Combust. Inst.
30
,
1283
(
2005
).
5.
A. M.
Starik
,
N. S.
Titova
,
A. S.
Sharipov
, and
V. E.
Kozlov
,
Combust., Explos. Shock Waves
46
,
491
(
2010
).
6.
D.-Y.
Hwang
and
A. M.
Mebel
,
Chem. Phys.
256
,
169
(
2000
).
7.
M.
Braunstein
and
J. W.
Duff
,
J. Chem. Phys.
112
,
2736
(
2000
).
8.
A. L.
Brunsvold
,
H. P.
Upadhyaya
,
J.
Zhang
,
R.
Cooper
,
T. K.
Minton
,
M.
Braunstein
, and
J. W.
Duff
,
J. Phys. Chem. A
112
,
2192
(
2008
).
9.
S. Yu.
Grebenshchikov
,
J. Chem. Phys.
138
,
224106
(
2013
).
10.
A.
Spielfiedel
,
N.
Feautrier
,
C.
Cossart-Magos
,
G.
Chambaud
,
P.
Rosmus
,
H.-J.
Werner
, and
P.
Botschwina
,
J. Chem. Phys.
97
,
8382
(
1992
).
11.
M. A.
Oehlschlaeger
,
D. F.
Davidson
,
J. B.
Jeffries
, and
R. K.
Hanson
,
Z. Phys. Chem.
219
,
555
(
2005
).
12.
S.
Saxena
,
J. H.
Kiefer
, and
R. S.
Tranter
,
J. Phys. Chem. A
111
,
3884
(
2007
).
13.
Numerous earlier experimental studies exist; see, e.g., Ref. 12 for a critical review of existing experimental results.
14.
J.
Troe
,
J. Chem. Phys.
66
,
4745
(
1977
).
15.
J.
Troe
,
J. Chem. Phys.
66
,
4758
(
1977
).
16.
W. A.
Hardy
,
H.
Vasatko
,
H. Gg.
Wagner
, and
F.
Zabel
,
Ber. Bunsenges. Phys. Chem.
78
,
76
(
1974
).
17.
H. Gg.
Wagner
and
F.
Zabel
,
Ber. Bunsenges. Phys. Chem.
78
,
705
(
1974
).
18.
A. P.
Zuev
and
A. Y.
Starikovskii
,
Khim. Fiz.
11
,
1518
(
1992
).
19.
E. C. Y.
Inn
and
J. M.
Heimerl
,
J. Atmos. Sci.
28
,
838
(
1971
).
20.
A.
Stolow
and
Y. T.
Lee
,
J. Chem. Phys.
98
,
2066
(
1993
).
21.
I. C.
Lu
,
J. J.
Lin
,
S. H.
Lee
,
Y. T.
Lee
, and
X. M.
Yang
,
Chem. Phys. Lett.
382
,
665
(
2003
).
22.
Z.
Chen
,
F.
Liu
,
B.
Jiang
,
X.
Yang
, and
D. H.
Parker
,
J. Phys. Chem. Lett.
1
,
1861
(
2010
).
23.
S. Yu.
Grebenshchikov
,
J. Chem. Phys.
138
,
224107
(
2013
).
24.
A.
Fernández-Ramos
,
J. A.
Miller
,
S. J.
Klippenstein
, and
D. G.
Truhlar
,
Chem. Rev.
106
,
4518
(
2006
).
25.
L. B.
Harding
,
S. J.
Klippenstein
, and
A. W.
Jasper
,
Phys. Chem. Chem. Phys.
9
,
4055
(
2007
).
26.
J. C.
Tully
, in
Modern Methods for Multidimensional Dynamics Calculations
, edited by
D. L.
Thompson
(
World Scientific
,
Singapore
,
1998
), p.
34
.
27.
A. W.
Jasper
,
S.
Nangia
,
C.
Zhu
, and
D. G.
Truhlar
,
Acc. Chem. Res.
39
,
101
(
2006
).
28.
C.
Zhu
,
S.
Nangia
,
A. W.
Jasper
, and
D. G.
Truhlar
,
J. Chem. Phys.
121
,
7658
(
2004
).
29.
H.-D.
Meyer
and
W. H.
Miller
,
J. Chem. Phys.
70
,
3214
(
1979
).
30.
J. C.
Tully
,
J. Chem. Phys.
93
,
1061
(
1990
).
31.
Q.
Cui
,
K.
Morokuma
,
J. M.
Bowman
, and
S. J.
Klippenstein
,
J. Chem. Phys.
110
,
9469
(
1999
).
32.
J. N.
Harvey
,
Phys. Chem. Chem. Phys.
9
,
331
(
2007
).
33.
R.
Dawes
,
A. F.
Wagner
, and
D. L.
Thompson
,
J. Phys. Chem. A.
113
(
16
)
4709
4721
(
2009
).
34.
A.
Li
,
A.
Xie
,
R.
Dawes
,
A. W.
Jasper
,
J.
Ma
, and
H.
Guo
,
J. Chem. Phys.
133
,
144306
(
2010
).
35.
A. J.
Binder
,
R.
Dawes
,
A. W.
Jasper
, and
J. P.
Camden
,
J. Phys. Chem. Lett.
1
,
2940
(
2010
).
36.
R.
Dawes
,
X.-G.
Wang
,
A. W.
Jasper
, and
T.
Carrington
, Jr.
,
J. Chem. Phys.
133
,
134304
(
2010
).
37.
M. P.
Deskevich
,
D. J.
Nesbitt
, and
H. J.
Werner
,
J. Chem. Phys.
120
,
7281
(
2004
).
38.
R.
Dawes
,
A. W.
Jasper
,
C.
Tao
,
C.
Richmond
,
C.
Mukarakate
,
S. H.
Kable
, and
S. A.
Reid
,
J. Phys. Chem. Lett.
1
,
641
(
2010
).
39.
T.
Helgaker
,
P.
Jorgensen
, and
J.
Olsen
,
Molecular Electronic Structure Theory
(
Wiley
,
New York
,
2000
).
40.
NIST Chemistry WebBook
,
NIST Standard Reference Database Number 69
, edited by
P. J.
Linstrom
and
W. G.
Mallard
(
National Institute of Standards and Technology
,
Gaithersburg MD
,
2010
), http://webbook.nist.gov.
41.
B. J.
Barker
,
I. O.
Antonov
,
J. M.
Merritt
,
V. E.
Bondybey
,
M. C.
Heaven
, and
R.
Dawes
,
J. Chem. Phys.
137
,
214313
(
2012
).
42.
C.
Tao
,
C.
Richmond
,
C.
Mukarakate
,
S. H.
Kable
,
G. B.
Bacskay
,
E. C.
Brown
,
R.
Dawes
,
P.
Lolur
, and
S. A.
Reid
,
J. Chem. Phys.
137
,
104307
(
2012
).
43.
R.
Dawes
,
P.
Lolur
,
J.
Ma
, and
H.
Guo
,
J. Chem. Phys.
135
,
081102
(
2011
).
44.
A.
Berning
,
M.
Schweizer
,
H.-J.
Werner
,
P. J.
Knowles
, and
P.
Palmier
,
Mol. Phys.
98
,
1823
(
2000
).
45.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
 et al, MOLPRO, version 2012.1, a package of ab initio programs,
2012
, see http://www.molpro.net.
46.
M. R.
Hoffmann
and
G. C.
Schatz
,
J. Chem. Phys.
113
,
9456
(
2000
).
47.
B.
Maiti
and
G. C.
Schatz
,
J. Chem. Phys.
119
,
12360
(
2003
).
48.
T.-S.
Chu
,
X.
Zhang
, and
K.-L.
Han
,
J. Chem. Phys.
122
,
214301
(
2005
).
49.
J.
Zhao
,
J. Chem. Phys.
138
,
134309
(
2013
).
50.
A.
Nicklass
,
K. A.
Peterson
,
A.
Berning
,
H.-J.
Werner
, and
P. J.
Knowles
,
J. Chem. Phys.
112
,
5624
(
2000
).
51.
D. L.
Cooper
,
J.
Hata
, and
I. P.
Grant
,
J. Phys. B
17
,
L499
(
1984
).
52.
C. A.
Mead
and
D. G.
Truhlar
,
J. Chem. Phys.
77
,
6090
(
1982
).
53.
A. W.
Jasper
,
S. N.
Stechmann
, and
D. G.
Truhlar
,
J. Chem. Phys.
116
,
5424
(
2002
);
A. W.
Jasper
,
S. N.
Stechmann
, and
D. G.
Truhlar
,
J. Chem. Phys.
117
,
10427
(E) (
2002
).
54.
T. J.
Martinez
,
Acc. Chem. Res.
39
,
119
(
2006
).
55.
C.
Zhu
,
A. W.
Jasper
, and
D. G.
Truhlar
,
J. Chem. Phys.
120
,
5543
(
2004
).
56.
Y. L.
Volobuev
,
M. D.
Hack
,
M. S.
Topaler
, and
D. G.
Truhlar
,
J. Chem. Phys.
112
,
9716
(
2000
).
57.
A. W.
Jasper
,
M. D.
Hack
, and
D. G.
Truhlar
,
J. Chem. Phys.
115
,
1804
(
2001
).
58.
A. W.
Jasper
and
D. G.
Truhlar
,
J. Chem. Phys.
122
,
044101
(
2005
).
59.
A. W.
Jasper
and
D. G.
Truhlar
, in
Conical Intersections: Theory, Computation, and Experiment
, edited by
W.
Domcke
,
D. R.
Yarkony
, and
H.
Köppel
(
World Scientific
,
2001
).
60.
A. W.
Jasper
,
C.
Zhu
,
S.
Nangia
, and
D. G.
Truhlar
,
Faraday Discuss. Chem. Soc.
127
,
1
(
2004
).
61.
M. D.
Hack
and
D. G.
Truhlar
,
J. Phys. Chem. A
104
,
7917
(
2000
).
62.
O. V.
Prezhdo
and
P. J.
Rossky
,
J. Chem. Phys.
107
,
5863
(
1997
).
63.
D. G.
Truhlar
, in
Quantum Dynamics of Complex Molecular Systems
, edited by
D. A.
Micha
and
I.
Burghardt
(
Springer
,
Berlin
,
2007
), pp.
227
243
.
64.
W. H.
Miller
,
J. Chem. Phys.
136
,
210901
(
2012
).
65.
G.
Granucci
and
M.
Persico
,
J. Chem. Phys.
126
,
134114
(
2007
).
66.
T.
Nelson
,
S.
Fernandez-Alberti
,
A. E.
Roitberg
, and
S.
Tretiak
,
J. Chem. Phys.
138
,
224111
(
2013
).
67.
A. W.
Jasper
and
D. G.
Truhlar
,
J. Chem. Phys.
123
,
064103
(
2005
).
68.
R.
Valero
,
D. G.
Truhlar
, and
A. W.
Jasper
,
J. Phys. Chem.
112
,
5756
(
2008
).
69.
H. C.
Andersen
,
J. Chem. Phys.
72
,
2348
(
1980
).
70.
D. G.
Truhlar
and
J. T.
Muckerman
, in
Atom-Molecule Collision Theory: A Guide for the Experimentalist
, edited by
R. D.
Bernstein
(
Plenum
,
New York
,
1979
), pp.
505
566
.
71.
L. M.
Raff
and
D. L.
Thompson
, in
Theory of Chemical Reaction Dynamics
, edited by
M.
Baer
, Vol.
3
(
CRC Press
,
Boca Raton
,
1985
), pp.
1
121
.
72.
R.
Schinke
,
Photodissociation Dynamics
(
Cambridge University Press
,
Cambridge
,
1993
).
73.
A. W.
Jasper
and
D. G.
Truhlar
,
J. Chem. Phys.
127
,
194306
(
2007
).
74.
A. W.
Jasper
and
D. G.
Truhlar
,
Chem. Phys. Lett.
369
,
60
(
2003
).
75.
J. B.
Delos
,
J. Chem. Phys.
59
,
2365
(
1973
).
76.
A. J.
Marks
and
D. L.
Thompson
,
J. Chem. Phys.
96
,
1911
(
1992
).
77.
G. E.
Zahr
,
R. K.
Preston
, and
W. H.
Miller
,
J. Chem. Phys.
62
,
1127
(
1975
).
78.
W. H.
Miller
,
J. Chem. Phys.
65
,
2216
(
1976
).
79.
S. J.
Klippenstein
,
L. R.
Khundkar
,
A. H.
Zewail
, and
R. A.
Marcus
,
J. Chem. Phys.
89
,
4761
(
1988
).
80.
E.
Wigner
,
J. Chem. Phys.
5
,
720
(
1937
).
81.
J. C.
Corchado
,
Y.-Y.
Chuang
,
P. L.
Fast
,
W.-P.
Hu
,
Y.-P.
Liu
,
G. C.
Lynch
,
K. A.
Nguyen
,
C. F.
Jackels
,
A. F.
Ramos
,
B. A.
Ellingson
,
B. J.
Lynch
,
J.
Zheng
,
V. S.
Melissas
,
J.
Villa
,
I.
Rossi
,
E. L.
Coitiño
,
J.
Pu
,
T. V.
Albu
,
R.
Steckler
,
B. C.
Garrett
,
A. D.
Isaacson
, and
D. G.
Truhlar
, POLYRATE 9.7, University of Minnesota, Minneapolis,
2007
, see http://comp.chem.umn.edu/polyrate/.
82.
C. F.
Jackels
,
Zhen
Gu
, and
D. G.
Truhlar
,
J. Chem. Phys.
102
,
3188
(
1995
).
83.
J.
Villà
and
D. G.
Truhlar
,
Theor. Chem. Acc.
97
,
317
(
1997
).
84.
J.
Keck
,
Discuss. Faraday Soc.
33
,
173
(
1962
).
85.
A. W.
Jasper
,
S. J.
Klippenstein
, and
L. B.
Harding
,
J. Phys. Chem. A
114
,
5759
(
2010
).
You do not currently have access to this content.