In the present work, we propose a simple model-free approach for the computation of molecular diffusion tensors from molecular dynamics trajectories. The method uses a rigid body trajectory of the molecule under consideration, which is constructed a posteriori by an accumulation of quaternion-based superposition fits of consecutive conformations. From the rigid body trajectory, we compute the translational and angular velocities of the molecule and by integration of the latter also the corresponding angular trajectory. All quantities can be referred to the laboratory frame and a molecule-fixed frame. The 6 × 6 diffusion tensor is computed from the asymptotic slope of the tensorial mean square displacement and, for comparison, also from the Kubo integral of the velocity correlation tensor. The method is illustrated for two simple model systems – a water molecule and a lysozyme molecule in bulk water. We give estimations of the statistical accuracy of the calculations.

1.
P. J.
Basser
,
J.
Mattiello
, and
D.
Lebihan
,
J. Magn. Reson., Ser. B
103
,
247
(
1994
).
2.
P.
Hagmann
,
L.
Jonasson
,
P.
Maeder
,
J. P.
Thiran
,
V. J.
Wedeen
, and
R.
Meuli
,
Radiographics
26
,
S205
(
2006
).
3.
S. H.
Northrup
and
H. P.
Erickson
,
Proc. Natl. Acad. Sci. U.S.A.
89
,
3338
(
1992
).
5.
R. R.
Gabdoulline
and
R. C.
Wade
,
Biophys. J.
72
,
1917
(
1997
).
6.
A.
Spaar
,
C.
Dammer
,
R. R.
Gabdoulline
,
R. C.
Wade
, and
V.
Helms
,
Biophys. J.
90
,
1913
(
2006
).
7.
J.
Balbo
,
P.
Mereghetti
,
D. P.
Herten
, and
R. C.
Wade
,
Biophys. J.
104
(
7
),
1576
1584
(
2013
).
8.
B.
Berne
and
R.
Pecora
,
Dynamic Light Scattering
(
Dover Publications
,
2000
).
9.
M.
Bée
,
Quasielastic Neutron Scattering: Principles and Applications in Solid State Chemistry, Biology and Materials Science
(
Adam Hilger
,
Bristol
,
1988
).
10.
A. J.
Nederveen
and
A. M. J. J.
Bonvin
,
J. Chem. Theory Comput.
1
,
363
(
2005
).
11.
E.
Meirovitch
,
Y. E.
Shapiro
,
A.
Polimeno
, and
J. H.
Freed
,
J. Phys. Chem. A
110
,
8366
(
2006
).
12.
B.
Halle
,
J. Chem. Phys.
131
,
224507
(
2009
).
13.
V.
Wong
and
D. A.
Case
,
J. Phys. Chem. B
112
,
6013
(
2008
).
14.
D. R.
Roe
and
T. E.
Cheatham
 III
,
J. Chem. Theory Comput.
9
,
3084
(
2013
).
16.
G. R.
Kneller
,
J. Chem. Phys.
128
,
194101
(
2008
).
17.
G.
Chevrot
,
P.
Calligari
,
K.
Hinsen
, and
G. R.
Kneller
,
J. Chem. Phys.
135
,
084110
(
2011
).
18.
C.
Gauß
,
J. Reine Angew. Math.
1829
,
232
(
1829
).
19.
J.
Boon
and
S.
Yip
,
Molecular Hydrodynamics
(
McGraw Hill
,
New York
,
1980
).
20.
J.-P.
Hansen
and
I.
McDonald
,
Theory of Simple Liquids
, 2nd ed. (
Academic Press
,
1986
).
21.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
(
2008
).
22.
H.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.-US
91
,
6269
(
1987
).
23.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
24.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
25.
J.
Kirchmair
,
P.
Markt
,
S.
Distinto
,
D.
Schuster
,
G.
Spitzer
,
K.
Liedl
,
T.
Langer
, and
G.
Wolber
,
J. Med. Chem.
51
,
7021
(
2008
).
26.
D. A.
Case
,
T. E.
Cheatham
,
T.
Darden
,
H.
Gohlke
,
R.
Luo
,
K. M.
Merz
,
A.
Onufriev
,
C.
Simmerling
,
B.
Wang
, and
R. J.
Woods
,
J. Comput. Chem.
26
,
1668
(
2005
).
27.
28.
G. R.
Kneller
,
W.
Doster
,
M.
Settles
,
S.
Cusack
, and
J.
Smith
,
J. Chem. Phys.
97
,
8864
(
1992
).
29.
K.
Hinsen
,
Procedia Comput. Sci.
4
,
579
(
2011
).
30.
See supplementary material at http://dx.doi.org/10.1063/1.4823996 for the software used for the computations and the input and output datasets.
31.
32.
K.
Hinsen
, ActivePapers Python edition, see https://bitbucket.org/khinsen/active_papers_py.
33.
K.
Krynicki
,
C. D.
Green
, and
D. W.
Sawyer
,
Faraday Discuss. Chem. Soc.
66
,
199
(
1978
).
34.
U.
Kaatze
,
J. Chem. Eng. Data
34
,
371
(
1989
).
35.
B.
Nyström
and
J.
Roots
,
Makromol. Chem.
185
,
1441
(
1984
).

Supplementary Material

You do not currently have access to this content.