The extended Koopmans' theorem (EKT) provides a straightforward way to compute ionization potentials (IPs) from any level of theory, in principle. However, for non-variational methods, such as Møller–Plesset perturbation and coupled-cluster theories, the EKT computations can only be performed as by-products of analytic gradients as the relaxed generalized Fock matrix (GFM) and one- and two-particle density matrices (OPDM and TPDM, respectively) are required [J. Cioslowski, P. Piskorz, and G. Liu, J. Chem. Phys.107, 6804 (1997)]. However, for the orbital-optimized methods both the GFM and OPDM are readily available and symmetric, as opposed to the standard post Hartree–Fock (HF) methods. Further, the orbital optimized methods solve the N-representability problem, which may arise when the relaxed particle density matrices are employed for the standard methods, by disregarding the orbital Z-vector contributions for the OPDM. Moreover, for challenging chemical systems, where spin or spatial symmetry-breaking problems are observed, the abnormal orbital response contributions arising from the numerical instabilities in the HF molecular orbital Hessian can be avoided by the orbital-optimization. Hence, it appears that the orbital-optimized methods are the most natural choice for the study of the EKT. In this research, the EKT for the orbital-optimized methods, such as orbital-optimized second- and third-order Møller–Plesset perturbation [U. Bozkaya, J. Chem. Phys.135, 224103 (2011)] and coupled-electron pair theories [OCEPA(0)] [U. Bozkaya and C. D. Sherrill, J. Chem. Phys.139, 054104 (2013)], are presented. The presented methods are applied to IPs of the second- and third-row atoms, and closed- and open-shell molecules. Performances of the orbital-optimized methods are compared with those of the counterpart standard methods. Especially, results of the OCEPA(0) method (with the aug-cc-pVTZ basis set) for the lowest IPs of the considered atoms and closed-shell molecules are substantially accurate, the corresponding mean absolute errors are 0.11 and 0.15 eV, respectively.

1.
J.
Linderberg
and
Y.
Öhrn
,
Propagators in Quantum Chemistry
, 2nd ed. (
John Wiley & Sons
,
New Jersey
,
2004
), pp.
123
153
.
2.
Y.
Öhrn
and
G.
Born
,
Adv. Quantum Chem.
13
,
1
(
1981
).
3.
J. V.
Ortiz
,
WIREs Comput. Mol. Sci.
3
,
123
(
2013
).
4.
R.
Flores-Moreno
and
J.
Ortiz
, in
Practical Aspects of Computational Chemistry
, edited by
J.
Leszczynski
and
M. K.
Shukla
(
Springer
,
London
,
2009
), pp.
1
17
.
5.
A. M.
Ferreira
,
G.
Seabra
,
O.
Dolgounitcheva
,
V. G.
Zakrzewski
, and
J. V.
Ortiz
, in
Quantum-Mechanical Prediction of Thermochemical Data
, edited by
J.
Cioslowski
(
Kluwer Academic Publishers
,
New York
,
2002
), pp.
131
159
.
6.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics
, 1st ed. (
Cambridge Press
,
New York
,
2009
), pp.
443
449
.
7.
J.
Simons
, in
Theory and Applications of Computational Chemistry: The First Forty Years
, edited by
C. E.
Dykstra
,
G.
Frenking
,
K. S.
Kim
, and
G.
Scuseria
(
Elsevier
,
Oxford
,
2005
), pp.
443
464
.
8.
J. F.
Stanton
and
J.
Gauss
,
J. Chem. Phys.
101
,
8938
(
1994
).
9.
J. F.
Stanton
and
J.
Gauss
,
J. Chem. Phys.
111
,
8785
(
1999
).
10.
J. F.
Stanton
and
J.
Gauss
,
J. Chem. Phys.
103
,
1064
(
1995
).
11.
M.
Kamiya
and
S.
Hirata
,
J. Chem. Phys.
125
,
074111
(
2006
).
12.
D. W.
Smith
and
O. W.
Day
,
J. Chem. Phys.
62
,
113
(
1975
).
13.
O. W.
Day
,
D. W.
Smith
, and
R. C.
Morrison
,
J. Chem. Phys.
62
,
115
(
1975
).
14.
M. M.
Morrell
,
R. G.
Parr
, and
M.
Levy
,
J. Chem. Phys.
62
,
549
(
1975
).
15.
J. C.
Ellenbogen
,
O. W.
Day
,
D. W.
Smith
, and
R. C.
Morrison
,
J. Chem. Phys.
66
,
4795
(
1977
).
16.
R. C.
Morrison
,
C. M.
Dixon
, and
J. R.
Mizell
,
Int. J. Quantum Chem., Quantum Chem.
52
(
S28
),
309
(
1994
).
17.
R. C.
Morrison
,
Int. J. Quantum Chem.
49
,
649
(
1994
).
18.
R. C.
Morrison
and
G. H.
Liu
,
J. Comput. Chem.
13
,
1004
(
1992
).
19.
R. C.
Morrison
and
P. W.
Ayers
,
J. Chem. Phys.
103
,
6556
(
1995
).
20.
K.
Pernal
and
J.
Cioslowski
,
Chem. Phys. Lett.
412
,
71
(
2005
).
21.
J.
Cioslowski
,
P.
Piskorz
, and
G.
Liu
,
J. Chem. Phys.
107
,
6804
(
1997
).
22.
P.
Leiva
and
M.
Piris
,
J. Chem. Phys.
123
,
214102
(
2005
).
23.
M.
Piris
,
J. M.
Matxain
,
X.
Lopez
, and
J. M.
Ugalde
,
J. Chem. Phys.
136
,
174116
(
2012
).
24.
M.
Piris
,
J. M.
Matxain
,
X.
Lopez
, and
J. M.
Ugalde
,
Theor. Chem. Acc.
132
,
1298
(
2013
).
25.
M.
Levy
and
R. G.
Parr
,
J. Chem. Phys.
64
,
2707
(
1976
).
26.
M.
Levy
,
J. P.
Perdew
, and
V.
Sahni
,
Phys. Rev. A
30
,
2745
(
1984
).
27.
J.
Katriel
and
E. R.
Davidson
,
Proc. Natl. Acad. Sci. U.S.A.
77
,
4403
(
1980
).
28.
B. T.
Pickup
and
J. G.
Snijders
,
Chem. Phys. Lett.
153
,
69
(
1988
).
29.
R. C.
Morrison
,
J. Chem. Phys.
96
,
3718
(
1992
).
30.
D.
Sundholm
and
J.
Olsen
,
J. Chem. Phys.
98
,
3999
(
1993
).
31.
J.
Olsen
and
D.
Sundholm
,
Chem. Phys. Lett.
288
,
282
(
1998
).
32.
K.
Pernal
and
J.
Cioslowski
,
J. Chem. Phys.
114
,
4359
(
2001
).
33.
D.
Vanfleteren
,
D. V.
Neck
,
P. W.
Ayers
,
R. C.
Morrison
, and
P.
Bultinck
,
J. Chem. Phys.
130
,
194104
(
2009
).
34.
M.
Ernzerhof
,
J. Chem. Theory Comput.
5
,
793
(
2009
).
35.
U.
Bozkaya
,
J. M.
Turney
,
Y.
Yamaguchi
,
H. F.
Schaefer
, and
C. D.
Sherrill
,
J. Chem. Phys.
135
,
104103
(
2011
).
36.
U.
Bozkaya
,
J. Chem. Phys.
135
,
224103
(
2011
).
37.
U.
Bozkaya
and
H. F.
Schaefer
,
J. Chem. Phys.
136
,
204114
(
2012
).
38.
E.
Soydaş
and
U.
Bozkaya
,
J. Chem. Theory Comput.
9
,
1452
(
2013
).
39.
U.
Bozkaya
and
C. D.
Sherrill
,
J. Chem. Phys.
138
,
184103
(
2013
).
40.
U.
Bozkaya
and
C. D.
Sherrill
,
J. Chem. Phys.
139
,
054104
(
2013
).
41.
U.
Bozkaya
,
J. Chem. Phys.
139
,
104116
(
2013
).
42.
U.
Bozkaya
and
C. D.
Sherrill
, “
Orbital-optimized MP2.5 and its analytic gradients: Approaching CCSD(T) quality for open-shell noncovalent interactions
” (unpublished).
43.
G. D.
Purvis
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
44.
G. E.
Scuseria
and
H. F.
Schaefer
,
Chem. Phys. Lett.
142
,
354
(
1987
).
45.
C. D.
Sherrill
,
A. I.
Krylov
,
E. F. C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
4171
(
1998
).
46.
A. I.
Krylov
,
C. D.
Sherrill
,
E. F. C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
10669
(
1998
).
47.
A. I.
Krylov
,
C. D.
Sherrill
, and
M.
Head-Gordon
,
J. Chem. Phys.
113
,
6509
(
2000
).
48.
S. R.
Gwaltney
,
C. D.
Sherrill
,
M.
Head-Gordon
, and
A. I.
Krylov
,
J. Chem. Phys.
113
,
3548
(
2000
).
49.
T. B.
Pedersen
,
H.
Koch
, and
C.
Hättig
,
J. Chem. Phys.
110
,
8318
(
1999
).
50.
T. B.
Pedersen
,
B.
Fernández
, and
H.
Koch
,
J. Chem. Phys.
114
,
6983
(
2001
).
51.
A.
Köhn
and
J.
Olsen
,
J. Chem. Phys.
122
,
084116
(
2005
).
52.
R. C.
Lochan
and
M.
Head-Gordon
,
J. Chem. Phys.
126
,
164101
(
2007
).
53.
F.
Neese
,
T.
Schwabe
,
S.
Kossmann
,
B.
Schirmer
, and
S.
Grimme
,
J. Chem. Theory Comput.
5
,
3060
(
2009
).
54.
W.
Kurlancheek
and
M.
Head-Gordon
,
Mol. Phys.
107
,
1223
(
2009
).
55.
S.
Kossmann
and
F.
Neese
,
J. Phys. Chem. A
114
,
11768
(
2010
).
56.
J. B.
Robinson
and
P. J.
Knowles
,
J. Chem. Theory Comput.
8
,
2653
(
2012
).
57.
J. B.
Robinson
and
P. J.
Knowles
,
J. Chem. Phys.
138
,
074104
(
2013
).
58.
C.
Kollmar
and
A.
Heßelmann
,
Theor. Chem. Acc.
127
,
311
(
2010
).
59.
C.
Kollmar
and
F.
Neese
,
J. Chem. Phys.
135
,
084102
(
2011
).
60.
N. C.
Handy
and
H. F.
Schaefer
,
J. Chem. Phys.
81
,
5031
(
1984
).
61.
N. A.
Burton
,
I. L.
Alberts
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Phys. Chem.
95
,
7466
(
1991
).
62.
Y.
Xie
,
W. D.
Allen
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Chem. Phys.
104
,
7615
(
1996
).
63.
T. D.
Crawford
,
J. F.
Stanton
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Chem. Phys.
107
,
10626
(
1997
).
64.
T. D.
Crawford
and
J. F.
Stanton
,
J. Chem. Phys.
112
,
7873
(
2000
).
65.
M.
Pitoňák
,
P.
Neogrády
,
J.
Černý
,
S.
Grimme
, and
P.
Hobza
,
ChemPhysChem
10
,
282
(
2009
).
66.
K. E.
Riley
,
J.
Řezáč
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
14
,
13187
(
2012
).
67.
R.
Sedlak
,
K. E.
Riley
,
J.
Řezáč
,
M.
Pitoňák
, and
P.
Hobza
,
ChemPhysChem
14
,
698
(
2013
).
68.
J. M.
Turney
,
A. C.
Simmonett
,
R. M.
Parrish
,
E. G.
Hohenstein
,
F.
Evangelista
,
J. T.
Fermann
,
B. J.
Mintz
,
L. A.
Burns
,
J. J.
Wilke
,
M. L.
Abrams
,
N. J.
Russ
,
M. L.
Leininger
,
C. L.
Janssen
,
E. T.
Seidl
,
W. D.
Allen
,
H. F.
Schaefer
,
R. A.
King
,
E. F.
Valeev
,
C. D.
Sherrill
, and
T. D.
Crawford
,
WIREs Comput. Mol. Sci.
2
,
556
(
2012
).
69.
E.
Dalgaard
and
P.
Jørgensen
,
J. Chem. Phys.
69
,
3833
(
1978
).
70.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic Structure Theory
, 1st ed. (
John Wiley & Sons
,
New York
,
2000
), pp.
496
504
.
71.
R.
Shepard
,
Adv. Chem. Phys.
69
,
63
(
1987
).
72.
R.
Shepard
,
Modern Electronic Structure Theory Part I
,
Advanced Series in Physical Chemistry
, Vol.
2
, edited by
D. R.
Yarkony
(
World Scientific Publishing Company
,
London
,
1995
), pp.
345
458
, 1st ed.
73.
F. E.
Harris
,
H. J.
Monkhorst
, and
D. L.
Freeman
,
Algebraic and Diagrammatic Methods in Many-Fermion Theory
, 1st ed. (
Oxford Press
,
New York
,
1992
), pp.
88
118
.
74.
T. D.
Crawford
and
H. F.
Schaefer
,
Rev. Comput. Chem.
14
,
33
(
2000
).
75.
R.
Longo
,
B.
Champagne
, and
Y.
Öhrn
,
Theor. Chem. Acc.
90
,
397
(
1995
).
76.
D. P.
Chong
,
O. V.
Gritsenko
, and
E. J.
Baerends
,
J. Chem. Phys.
116
,
1760
(
2002
).
77.
NIST Chemistry WebBook
, edited by
P. J.
Linstrom
and
W. G.
Mallard
,
NIST Standard Reference Database Number 69
(
National Institute of Standards and Technology
,
Gaithersburg, MD
), http://webbook.nist.gov (retrieved July
2013
).
78.
U.
Bozkaya
and
I.
Özkan
,
J. Org. Chem.
77
,
2337
(
2012
).
79.
U.
Bozkaya
and
I.
Özkan
,
J. Phys. Chem. A
116
,
2309
(
2012
).
80.
U.
Bozkaya
and
I.
Özkan
,
J. Phys. Chem. A
116
,
3274
(
2012
).
81.
U.
Bozkaya
and
I.
Özkan
,
J. Org. Chem.
77
,
5714
(
2012
).
82.
U.
Bozkaya
and
I.
Özkan
,
Phys. Chem. Chem. Phys.
14
,
14282
(
2012
).
83.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
84.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
85.
P. C.
Hariharan
and
J. A.
Pople
,
Theor. Chim. Acta
28
,
213
(
1973
).
86.
A. D.
McLean
and
G. S.
Chandler
,
J. Chem. Phys.
72
,
5639
(
1980
).
87.
K.
Raghavachari
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
88.
NIST Computational Chemistry Comparison and Benchmark Database
, edited by
R. D.
Johnson
 III
,
NIST Standard Reference Database Number 101 Release 15b
(
National Institute of Standards and Technology
, August
2011
), http://cccbdb.nist.gov.
89.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
90.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
103
,
4572
(
1995
).
91.
See supplementary material at http://dx.doi.org/10.1063/1.4825041 for IPs computed with the cc-pVTZ basis set and the corresponding MAE graphics.
92.
J. C.
Rienstra-Kiracofe
,
G. S.
Tschumper
,
H. F.
Schaefer
,
S.
Nandi
, and
G. B.
Ellison
,
Chem. Rev.
102
,
231
(
2002
).
93.
U.
Bozkaya
and
H. F.
Schaefer
,
Mol. Phys.
108
,
2491
(
2010
).
94.
S.
Huzinaga
,
J. Chem. Phys.
42
,
1293
(
1965
).
95.
T. H.
Dunning
,
J. Chem. Phys.
53
,
2823
(
1970
).
96.
T. J.
Lee
and
H. F.
Schaefer
,
J. Chem. Phys.
83
,
1784
(
1985
).
97.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
,
J. Chem. Phys.
100
,
5829
(
1994
).
98.
F.
Weigend
,
M.
Häser
,
H.
Patzelt
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
294
,
143
(
1998
).
99.
R. I.
Zubatyuk
,
L.
Gorb
,
O. V.
Shishkin
,
M.
Qasim
, and
J.
Leszczynski
,
J. Comput. Chem.
31
,
144
(
2009
).
100.
R.
Flores-Moreno
,
V. G.
Zakrzewski
, and
J. V.
Ortiz
,
J. Chem. Phys.
127
,
134106
(
2007
).
101.
M. J. S.
Dewar
,
H. W.
Kollmar
, and
S. H.
Suck
,
Theor. Chem. Acc.
127
,
237
(
1975
).

Supplementary Material

You do not currently have access to this content.