We introduce state-averaging into the method of Monte Carlo configuration interaction (SA-MCCI) to allow the stable and efficient calculation of excited states. We show that excited potential curves for H3, including a crossing with the ground state, can be accurately reproduced using a small fraction of the full configuration interaction (FCI) space. A recently introduced error measure for potential curves [J. P. Coe and M. J. Paterson, J. Chem. Phys.137, 204108 (2012)] is also shown to be a fair approach when considering potential curves for multiple states. We demonstrate that potential curves for LiF using SA-MCCI agree well with the FCI results and the avoided crossing occurs correctly. The seam of conical intersections for CH2 found by Yarkony [J. Chem. Phys.104, 2932 (1996)] is used as a test for SA-MCCI and we compare potential curves from SA-MCCI with FCI results for this system for the first three triplet states. We then demonstrate the improvement from using SA-MCCI on the dipole of the 2 1A1 state of carbon monoxide. We then look at vertical excitations for small organic molecules up to the size of butadiene where the SA-MCCI energies and oscillator strengths are compared with CASPT2 values [M. Schreiber, M. R. Silva-Junior, S. P. A. Sauer, and W. Thiel, J. Chem. Phys.128, 134110 (2008)]. We finally see if the SA-MCCI results for these excitation energies can be improved by using MCCIPT2 with approximate natural orbitals when the PT2 space is not onerously large.

1.
J. C.
Greer
,
J. Comp. Phys.
146
,
181
(
1998
).
2.
L.
Tong
,
M.
Nolan
,
T.
Cheng
, and
J. C.
Greer
,
Comput. Phys. Commun.
131
,
142
(
2000
).
3.
W.
Győrffy
,
R. J.
Bartlett
, and
J. C.
Greer
,
J. Chem. Phys.
129
,
064103
(
2008
).
4.
J. P.
Coe
,
D. J.
Taylor
, and
M. J.
Paterson
,
J. Chem. Phys.
137
,
194111
(
2012
).
5.
J. P.
Coe
,
D. J.
Taylor
, and
M. J.
Paterson
,
J. Comput. Chem.
34
,
1083
(
2013
).
6.
J. F.
Stanton
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
7029
(
1993
).
7.
P. E. M.
Siegbahn
,
J.
Almlöf
,
A.
Heiberg
, and
B. O.
Roos
,
J. Chem. Phys.
74
,
2384
(
1981
).
8.
K.
Andersson
,
P.-Å.
Malmqvist
,
B. O.
Roos
,
A. J.
Sadlej
, and
K.
Wolinski
,
J. Phys. Chem.
94
,
5483
(
1990
).
9.
Y.
Ohtsuka
and
S.
Nagase
,
Chem. Phys. Lett.
485
,
367
(
2010
).
10.
G. H.
Booth
and
G. K.-L.
Chan
,
J. Chem. Phys.
137
,
191102
(
2012
).
11.
S.
Ten-no
,
J. Chem. Phys.
138
,
164126
(
2013
).
12.
J. P.
Coe
and
M. J.
Paterson
,
J. Chem. Phys.
137
,
204108
(
2012
).
13.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
 et al., MOLPRO, version 2010.1, a package of abinitio programs,
2010
, see http://www.molpro.net.
14.
H.
Lischka
,
R.
Shepard
,
I.
Shavitt
,
R. M.
Pitzer
,
M.
Dallos
,
T.
Muller
,
P. G.
Szalay
,
F. B.
Brown
,
R.
Ahlrichs
,
H. J.
Boehm
,
A.
Chang
,
D. C.
Comeau
,
R.
Gdanitz
,
H.
Dachsel
,
C.
Ehrhardt
,
M.
Ernzerhof
,
P.
Hochtl
,
S.
Irle
,
G.
Kedziora
,
T.
Kovar
,
V.
Parasuk
,
M. J. M.
Pepper
,
P.
Scharf
,
H.
Schiffer
,
M.
Schindler
,
M.
Schuler
,
M.
Seth
,
E. A.
Stahlberg
,
J.-G.
Zhao
,
S.
Yabushita
,
Z.
Zhang
,
M.
Barbatti
,
S.
Matsika
,
M.
Schuurmann
,
D. R.
Yarkony
,
S. R.
Brozell
,
E. V.
Beck
,
J.-P.
Blaudeau
,
M.
Ruckenbauer
,
B.
Sellner
,
F.
Plasser
, and
J. J.
Szymczak
, “
Columbus, an ab initio electronic structure program, Release 5.9.2, http://www.univie.ac.at/columbus (2008)
.”
15.
W.
Győrffy
, “
Monte Carlo configuration interaction method for calculation of electronic spectra of molecules
,” Ph.D. thesis,
University College Cork
,
2007
.
16.
B.
Liu
, in
Report on The Workshop Numerical Algorithms in Chemistry: Algebraic Methods
, edited by
C.
Moler
and
I.
Shavitt
(
Lawrence Berkeley National Laboratory
,
1979
), p.
49
.
17.
H.
Longuet-Higgins
,
Proc. R. Soc. London A
344
,
147
(
1975
).
18.
P.-O.
Löwdin
,
Phys. Rev.
97
,
1474
(
1955
).
19.
C. W.
Bauschlicher
, Jr.
and
S. R.
Langhoff
,
J. Chem. Phys.
89
,
4246
(
1988
).
20.
J.-P.
Malrieu
,
J.-L.
Heully
, and
A.
Zaitzevskii
,
Theor. Chim. Acta
90
,
167
(
1995
).
21.
J.
Finley
,
P.-Å.
Malmqvist
,
B. O.
Roos
, and
L.
Serrano-Andrés
,
Chem. Phys. Lett.
288
,
299
(
1998
).
22.
A. J. C.
Varandas
,
J. Chem. Phys.
131
,
124128
(
2009
).
23.
J. C.
Greer
,
J. Chem. Phys.
103
,
1821
(
1995
).
24.
P. J.
Knowles
and
N. C.
Handy
,
Chem. Phys. Lett.
111
,
315
(
1984
).
25.
D. R.
Yarkony
,
J. Chem. Phys.
104
,
2932
(
1996
).
26.
M.
Schreiber
,
M. R.
Silva-Junior
,
S. P. A.
Sauer
, and
W.
Thiel
,
J. Chem. Phys.
128
,
134110
(
2008
).
27.
A.
Schäfer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).
28.
K.
Nakayama
,
H.
Nakano
, and
K.
Hirao
,
Int. J. Quantum Chem.
66
,
157
(
1998
).
29.
R. J.
Harrison
,
J. Chem. Phys.
94
,
5021
(
1991
).
30.
J. A.
Pople
,
M.
Head-Gordon
, and
K.
Raghavachari
,
J. Chem. Phys.
87
,
5968
(
1987
).
31.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
You do not currently have access to this content.