A growing body of experimental work indicates that physical vapor deposition provides an effective route for preparation of stable glasses, whose properties correspond in some cases to those expected for glasses that have been aged for thousands of years. In this work, model binary glasses are prepared in a process inspired by physical vapor deposition, in which particles are sequentially added to the free surface of a growing film in molecular dynamics simulations. The resulting glasses are shown to be more stable than those prepared by gradual cooling from the liquid phase. However, it is also shown that the composition of the resulting glass, which is difficult to control in physical vapor deposition simulations of thin films, plays a significant role on the physical characteristics of the material. That composition dependence leads to a re-evaluation of previous results from simulations of thinner films than those considered here, where the equivalent age of the corresponding glasses was overestimated. The simulations presented in this work, which correspond to films that are approximately 38 molecular diameters thick, also enable analysis of the devitrification mechanism by which vapor-deposited glasses transform into the supercooled liquid. Consistent with experiments, it is found that this mechanism consists of a mobility front that propagates from the free interface into the interior of the films. Eliminating surface mobility eliminates this route of transformation into the supercooled liquid.

1.
C. A.
Angell
,
Science
267
(
5206
),
1924
1935
(
1995
).
2.
S.
Sastry
,
P. G.
Debenedetti
, and
F. H.
Stillinger
,
Nature (London)
393
(
6685
),
554
557
(
1998
).
3.
C. A.
Angell
,
K. L.
Ngai
,
G. B.
McKenna
,
P. F.
McMillan
, and
S. W.
Martin
,
J. Appl. Phys.
88
(
6
),
3113
3157
(
2000
).
4.
S. F.
Swallen
,
K. L.
Kearns
,
M. K.
Mapes
,
Y. S.
Kim
,
R. J.
McMahon
,
M. D.
Ediger
,
T.
Wu
,
L.
Yu
, and
S.
Satija
,
Science
315
(
5810
),
353
356
(
2007
).
5.
S. S.
Dalal
and
M. D.
Ediger
,
J. Phys. Chem. Lett.
3
(
10
),
1229
1233
(
2012
).
6.
K. L.
Kearns
,
T.
Still
,
G.
Fytas
, and
M. D.
Ediger
,
Adv. Mater.
22
(
1
),
39
(
2010
).
7.
S. L. L. M.
Ramos
,
M.
Oguni
,
K.
Ishii
, and
H.
Nakayama
,
J. Phys. Chem. B
115
(
49
),
14327
14332
(
2011
).
8.
K. L.
Kearns
,
S. F.
Swallen
,
M. D.
Ediger
,
Y.
Sun
, and
L.
Yu
,
J. Phys. Chem. B
113
(
6
),
1579
1586
(
2009
).
9.
K. L.
Kearns
,
S. F.
Swallen
,
M. D.
Ediger
,
T.
Wu
, and
L.
Yu
,
J. Chem. Phys.
127
(
15
),
154702
(
2007
).
10.
E.
Leon-Gutierrez
,
G.
Garcia
,
A. F.
Lopeandia
,
J.
Fraxedas
,
M. T.
Clavaguera-Mora
, and
J.
Rodriguez-Viejo
,
J. Chem. Phys.
129
(
18
),
181101
(
2008
).
11.
K. L.
Kearns
,
S. F.
Swallen
,
M. D.
Ediger
,
T.
Wu
,
Y.
Sun
, and
L.
Yu
,
J. Chem. Phys. B
112
(
16
),
4934
4942
(
2008
).
12.
K.
Dawson
,
L. A.
Kopff
,
L.
Zhu
,
R. J.
McMahon
,
L.
Yu
,
R.
Richert
, and
M. D.
Ediger
,
J. Chem. Phys.
136
(
9
),
094505
(
2012
).
13.
K. R.
Whitaker
,
D. J.
Scifo
,
M. D.
Ediger
,
M.
Ahrenberg
, and
C.
Schick
, “
Highly stable glasses of cis-decalin and cis/trans-decalin mixtures
,”
J. Phys. Chem. B
(published online).
14.
S.
Leonard
and
P.
Harrowell
,
J. Chem. Phys.
133
(
24
),
244502
(
2010
).
15.
P. G.
Wolynes
,
Proc. Natl. Acad. Sci. U.S.A.
106
(
5
),
1353
1358
(
2009
).
16.
I.
Douglass
and
P.
Harrowell
,
J. Chem. Phys.
138
(
12
),
12A516
(
2013
).
17.
A.
Wisitsorasak
and
P. G.
Wolynes
,
Phys. Rev. E
88
,
022308
(
2013
).
18.
S.
Singh
and
J. J.
de Pablo
,
J. Chem. Phys.
134
(
19
),
194903
(
2011
).
19.
S.
Singh
,
M. D.
Ediger
, and
J. J.
de Pablo
,
Nature Mater.
12
(
2
),
139
144
(
2013
).
20.
W.
Kob
and
H. C.
Andersen
,
Phys. Rev. E
51
(
5
),
4626
4641
(
1995
).
21.
A.
Sepulveda
,
S. F.
Swallen
, and
M. D.
Ediger
,
J. Chem. Phys.
138
(
12
),
12A517
(
2013
).
22.
R. L.
Jack
,
L. O.
Hedges
,
J. P.
Garrahan
, and
D.
Chandler
,
Phys. Rev. Lett.
107
(
27
),
275702
(
2011
).
23.
T.
Speck
,
A.
Malins
, and
C. P.
Royall
,
Phys. Rev. Lett.
109
(
19
),
195703
(
2012
).
24.
W.
Kob
and
H. C.
Andersen
,
Phys. Rev. Lett.
73
(
10
),
1376
1379
(
1994
).
25.
G. J.
Martyna
,
M. L.
Klein
, and
M.
Tuckerman
,
J. Chem. Phys.
97
(
4
),
2635
2643
(
1992
).
26.
E.
Bitzek
,
P.
Koskinen
,
F.
Gahler
,
M.
Moseler
, and
P.
Gumbsch
,
Phys. Rev. Lett.
97
(
17
),
170201
(
2006
).
27.
K.
Dawson
,
L.
Zhu
,
L. A.
Kopff
,
R. J.
McMahon
,
L.
Yu
, and
M. D.
Ediger
,
J. Phys. Chem. Lett.
2
(
21
),
2683
2687
(
2011
).
28.
A.
Sepulveda
,
S. F.
Swallen
,
L. A.
Kopff
,
R. J.
McMahon
, and
M. D.
Ediger
,
J. Chem. Phys.
137
(
20
),
204508
(
2012
).
29.
S. F.
Swallen
,
K.
Traynor
,
R. J.
McMahon
,
M. D.
Ediger
, and
T. E.
Mates
,
Phys. Rev. Lett.
102
(
6
),
065503
(
2009
).
You do not currently have access to this content.