A new highly accurate interaction potential is constructed for the He–H2 van der Waals complex. This potential is fitted to 1900 ab initioenergies computed at the very large-basis coupled-cluster level and augmented by corrections for higher-order excitations (up to full configuration interaction level) and the diagonal Born-Oppenheimer correction. At the vibrationally averaged H–H bond length of 1.448736 bohrs, the well depth of our potential, 15.870 ± 0.065 K, is nearly 1 K larger than the most accurate previous studies have indicated. In addition to constructing our own three-dimensional potential in the van der Waals region, we present a reparameterization of the Boothroyd-Martin-Peterson potential surface [A. I. Boothroyd, P. G. Martin, and M. R. Peterson, J. Chem. Phys.119, 3187 (2003)] that is suitable for all configurations of the triatomic system. Finally, we use the newly developed potentials to compute the properties of the lone bound states of 4He–H2 and 3He–H2 and the interaction second virial coefficient of the hydrogen-helium mixture.

1.
T.
Abel
,
G. L.
Bryan
, and
M. L.
Norman
,
Science
295
,
93
(
2002
).
2.
S. C. O.
Glover
and
T.
Abel
,
Mon. Not. R. Astron. Soc.
388
,
1627
(
2008
).
3.
H. C.
Harris
,
E.
Gates
,
G.
Gyuk
,
M.
Subbarao
,
S. F.
Anderson
,
P. B.
Hall
,
J. A.
Munn
,
J.
Liebert
,
G. R.
Knapp
,
D.
Bizyaev
,
E.
Malanushenko
,
V.
Malanushenko
,
K.
Pan
,
D. P.
Schneider
, and
J. A.
Smith
,
Astrophys. J.
679
,
697
(
2008
).
4.
S.
Grebenev
,
B.
Sartakov
,
J. P.
Toennies
, and
A. F.
Vilesov
,
Science
289
,
1532
(
2000
).
5.
F.
Mezzacapo
and
M.
Boninsegni
,
Phys. Rev. Lett.
100
,
145301
(
2008
).
6.
P.
Barletta
,
J.
Tennyson
, and
P. F.
Barker
,
Phys. Rev. A
78
,
052707
(
2008
).
7.
C. W.
Wilson
, Jr.
,
R.
Kapral
, and
G.
Burns
,
Chem. Phys. Lett.
24
,
488
(
1974
).
8.
P. J. M.
Geurts
,
P. E. S.
Wormer
, and
A.
van der Avoird
,
Chem. Phys. Lett.
35
,
444
(
1975
).
9.
W.
Meyer
,
P. C.
Hariharan
, and
W.
Kutzelnigg
,
J. Chem. Phys.
73
,
1880
(
1980
).
10.
U. E.
Senff
and
P. G.
Burton
,
J. Phys. Chem.
89
,
797
(
1985
).
11.
J.
Schaefer
and
W. E.
Köhler
,
Physica A
129
,
469
(
1985
).
12.
P.
Muchnick
and
A.
Russek
,
J. Chem. Phys.
100
,
4336
(
1994
).
13.
F.-M.
Tao
,
J. Chem. Phys.
100
,
4947
(
1994
).
14.
A. I.
Boothroyd
,
P. G.
Martin
, and
M. R.
Peterson
,
J. Chem. Phys.
119
,
3187
(
2003
).
15.
F. A.
Gianturco
,
T.
González-Lezana
,
G.
Delgado-Barrio
, and
P.
Villareal
,
J. Chem. Phys.
122
,
084308
(
2005
).
16.
Y.
Xiao
and
B.
Poirier
,
J. Phys. Chem. A
110
,
5475
(
2006
).
17.
P.
Barletta
,
Eur. Phys. J. D
53
,
33
(
2009
).
18.
H.
Suno
,
J. Chem. Phys.
132
,
224311
(
2010
).
19.
T.-G.
Lee
,
C.
Rochow
,
R.
Martin
,
T. K.
Clark
,
R. C.
Forrey
,
N.
Balakrishnan
,
P. C.
Stancil
,
D. R.
Schultz
,
A.
Dalgarno
, and
G. J.
Ferland
,
J. Chem. Phys.
122
,
024307
(
2005
).
20.
M.
Audibert
,
R.
Vilaseca
,
J.
Lukasik
, and
J.
Ducuing
,
Chem. Phys. Lett.
37
,
408
(
1976
).
21.
J. L.
Nolte
,
B. H.
Yang
,
P. C.
Stancil
,
T.-G.
Lee
,
N.
Balakrishnan
,
R. C.
Forrey
, and
A.
Dalgarno
,
Phys. Rev. A
81
,
014701
(
2010
).
22.
J. L.
Nolte
,
P. C.
Stancil
,
T.-G.
Lee
,
N.
Balakrishnan
, and
R. C.
Forrey
,
Astrophys. J.
744
,
62
(
2012
).
23.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
24.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
25.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
26.
F.-M.
Tao
and
Y.-K.
Pan
,
J. Phys. Chem.
95
,
3582
(
1991
).
27.
C.
Hättig
,
W.
Klopper
,
A.
Köhn
, and
D. P.
Tew
,
Chem. Rev.
112
,
4
(
2012
).
28.
L.
Kong
,
F. A.
Bischoff
, and
E. F.
Valeev
,
Chem. Rev.
112
,
75
(
2012
).
29.
K. E.
Riley
and
P.
Hobza
,
WIREs Comput. Mol. Sci.
1
,
3
(
2011
).
30.
E. G.
Hohenstein
and
C. D.
Sherrill
,
WIREs Comput. Mol. Sci.
2
,
304
(
2012
).
31.
S. A.
Kucharski
and
R. J.
Bartlett
,
J. Chem. Phys.
108
,
9221
(
1998
).
32.
Y. J.
Bomble
,
J. F.
Stanton
,
M.
Kállay
, and
J.
Gauss
,
J. Chem. Phys.
123
,
054101
(
2005
).
33.
R.
Hellmann
,
E.
Bich
, and
E.
Vogel
,
Mol. Phys.
106
,
133
(
2008
).
34.
K.
Patkowski
and
K.
Szalewicz
,
J. Chem. Phys.
133
,
094304
(
2010
).
35.
P.
Jankowski
,
A. R. W.
McKellar
, and
K.
Szalewicz
,
Science
336
,
1147
(
2012
).
36.
J. R.
Lane
,
J. Chem. Theory Comput.
9
,
316
(
2013
).
37.
J.
Řezáč
,
L.
Šimová
, and
P.
Hobza
,
J. Chem. Theory Comput.
9
,
364
(
2013
).
38.
J.
Řezáč
and
P.
Hobza
,
J. Chem. Theory Comput.
9
,
2151
(
2013
).
39.
The conversion factors employed were 1 hartree = 315 774.65 K and 1 K = 0.6950356 cm−1 for the energy and 1 bohr = 0.529177209 Å for the distance.
40.
W.
Cencek
and
K.
Szalewicz
,
Int. J. Quantum Chem.
108
,
2191
(
2008
).
41.
W.
Cencek
,
M.
Przybytek
,
J.
Komasa
,
J. B.
Mehl
,
B.
Jeziorski
, and
K.
Szalewicz
,
J. Chem. Phys.
136
,
224303
(
2012
).
42.
K.
Patkowski
,
W.
Cencek
,
P.
Jankowski
,
K.
Szalewicz
,
J. B.
Mehl
,
G.
Garberoglio
, and
A. H.
Harvey
,
J. Chem. Phys.
129
,
094304
(
2008
).
43.
R. J.
Hinde
,
J. Chem. Phys.
128
,
154308
(
2008
).
44.
G.
Garberoglio
,
P.
Jankowski
,
K.
Szalewicz
, and
A. H.
Harvey
,
J. Chem. Phys.
137
,
154308
(
2012
).
45.
X.
Li
,
A.
Mandal
,
E.
Miliordos
, and
K. L. C.
Hunt
,
J. Chem. Phys.
136
,
044320
(
2012
).
46.
D. W.
Schwenke
,
J. Chem. Phys.
89
,
2076
(
1988
).
47.
R. J.
LeRoy
and
J. M.
Hutson
,
J. Chem. Phys.
86
,
837
(
1987
).
48.
P.
Jankowski
and
K.
Szalewicz
,
J. Chem. Phys.
123
,
104301
(
2005
).
49.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
100
,
2975
(
1994
).
50.
S. L.
Mielke
,
B. C.
Garrett
, and
K. A.
Peterson
,
J. Chem. Phys.
116
,
4142
(
2002
).
51.
R. J.
Gdanitz
,
J. Chem. Phys.
113
,
5145
(
2000
).
52.
R.
Podeszwa
,
R.
Bukowski
, and
K.
Szalewicz
,
J. Phys. Chem. A
110
,
10345
(
2006
).
53.
R.
Podeszwa
,
K.
Patkowski
, and
K.
Szalewicz
,
Phys. Chem. Chem. Phys.
12
,
5974
(
2010
).
54.
H. L.
Williams
,
E. M.
Mas
,
K.
Szalewicz
, and
B.
Jeziorski
,
J. Chem. Phys.
103
,
7374
(
1995
).
55.
M.
Jeziorska
,
W.
Cencek
,
K.
Patkowski
,
B.
Jeziorski
, and
K.
Szalewicz
,
Int. J. Quantum Chem.
108
,
2053
(
2008
).
56.
K.
Patkowski
,
J. Chem. Phys.
137
,
034103
(
2012
).
57.
M.
Douglas
and
N. M.
Kroll
,
Ann. Phys.
82
,
89
(
1974
).
58.
59.
J.
Gauss
,
A.
Tajti
,
M.
Kállay
,
J. F.
Stanton
, and
P. G.
Szalay
,
J. Chem. Phys.
125
,
144111
(
2006
).
60.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
 et al, MOLPRO, version 2010.1, a package of ab initio programs,
2010
, see http://www.molpro.net.
61.
J.
Stanton
,
J.
Gauss
,
M.
Harding
,
P.
Szalay
,
A.
Auer
,
R.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D.
Bernholdt
,
Y.
Bomble
,
O.
Christiansen
,
M.
Heckert
,
O.
Heun
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
K.
Klein
,
W.
Lauderdale
,
D.
Matthews
,
T.
Metzroth
,
D.
O'Neill
,
D.
Price
,
E.
Prochnow
,
K.
Ruud
,
F.
Schiffmann
,
S.
Stopkowicz
,
A.
Tajti
,
J.
Vázquez
,
F.
Wang
, and
J.
Watts
, CFOUR, a quantum chemical program package, containing the integral packages MOLECULE (J. Almlöf and P. R. Taylor), PROPS (P. R. Taylor), ABACUS (T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van Wüllen. For the current version, see http://www.cfour.de (accessed 6 November
2012
).
62.
J.
Olsen
, LUCIA, A full CI, general active space program, with contributions from H. Larsen and M. Fulscher,
2000
.
63.
DALTON, a molecular electronic structure program, Release 2.0,
2005
, see http://daltonprogram.org.
64.
T. B.
Adler
,
G.
Knizia
, and
H.-J.
Werner
,
J. Chem. Phys.
127
,
221106
(
2007
).
65.
G.
Knizia
,
T. B.
Adler
, and
H.-J.
Werner
,
J. Chem. Phys.
130
,
054104
(
2009
).
66.
C.
Hättig
,
D. P.
Tew
, and
A.
Köhn
,
J. Chem. Phys.
132
,
231102
(
2010
).
67.
K.
Patkowski
,
J. Chem. Phys.
138
,
154101
(
2013
).
68.
J.
Mitroy
,
S.
Bubin
,
W.
Horiuchi
,
Y.
Suzuki
,
L.
Adamowicz
,
W.
Cencek
,
K.
Szalewicz
,
J.
Komasa
,
D.
Blume
, and
K.
Varga
,
Rev. Mod. Phys.
85
,
693
(
2013
).
69.
W.
Tung
,
M.
Pavanello
, and
L.
Adamowicz
,
J. Chem. Phys.
133
,
124106
(
2010
).
70.
L.
Wolniewicz
,
J. Chem. Phys.
99
,
1851
(
1993
).
71.
J. S.
Sims
and
S. A.
Hagstrom
,
J. Chem. Phys.
124
,
094101
(
2006
).
72.
H.
Nakatsuji
,
H.
Nakashima
,
Y.
Kurokawa
, and
A.
Ishikawa
,
Phys. Rev. Lett.
99
,
240402
(
2007
).
73.
K.
Piszczatowski
,
G.
Łach
,
M.
Przybytek
,
J.
Komasa
,
K.
Pachucki
, and
B.
Jeziorski
,
J. Chem. Theory Comput.
5
,
3039
(
2009
).
74.
K.
Pachucki
,
Phys. Rev. A
82
,
032509
(
2010
).
75.
K. T.
Tang
and
J. P.
Toennies
,
J. Chem. Phys.
80
,
3726
(
1984
).
76.
A. J.
Thakkar
,
Z.-M.
Hu
,
C. E.
Chuaqui
,
J. S.
Carley
, and
R. J.
LeRoy
,
Theor. Chim. Acta
82
,
57
(
1992
).
77.
E. M.
Mas
and
K.
Szalewicz
,
J. Chem. Phys.
104
,
7606
(
1996
).
78.
M.
Jeziorska
,
P.
Jankowski
,
K.
Szalewicz
, and
B.
Jeziorski
,
J. Chem. Phys.
113
,
2957
(
2000
).
79.
See supplementary material at http://dx.doi.org/10.1063/1.4824299 for the complete set of ab initio data and the FORTRAN codes calculating our 2D, 3D, and BMPmod potentials.
80.
P. E. S.
Wormer
,
H.
Hettema
, and
A. J.
Thakkar
,
J. Chem. Phys.
98
,
7140
(
1993
).
81.
R.
Gengenbach
,
C.
Hahn
, and
J. P.
Toennies
,
Phys. Rev. A
7
,
98
(
1973
).
82.
E.
Jones
,
T.
Oliphant
, and
P.
Peterson
, SciPy: Open Source Scientific Tools for Python,
2001
, see http://www.scipy.org/.
83.
A. S.
Jensen
,
K.
Riisager
, and
D. V.
Fedorov
,
Rev. Mod. Phys.
76
,
215
(
2004
).
84.
N.
Balakrishnan
,
R. C.
Forrey
, and
A.
Dalgarno
,
Phys. Rev. Lett.
80
,
3224
(
1998
).
85.
J. M.
Hutson
,
Comput. Phys. Commun.
84
,
1
(
1994
).
86.
J. M.
Hutson
, BOUND computer code, version 5, distributed by Collaborative Computational Project No. 6 of the UK Science and Engineering Research Council,
1993
.
87.
D. E.
Manolopoulos
, Ph.D. thesis,
University of Cambridge
,
1988
.
88.
J. M.
Hutson
,
Chem. Phys. Lett.
151
,
565
(
1988
).
89.
M.
Przybytek
,
W.
Cencek
,
J.
Komasa
,
G.
Łach
,
B.
Jeziorski
, and
K.
Szalewicz
,
Phys. Rev. Lett.
104
,
183003
(
2010
).
90.
J. J.
Hurly
and
M. R.
Moldover
,
J. Res. Natl. Inst. Stand. Technol.
105
,
667
(
2000
).
91.
F. R. W.
McCourt
,
D.
Weir
,
G. B.
Clark
, and
M.
Thachuk
,
Mol. Phys.
103
,
17
(
2005
).
92.
R. T.
Pack
,
J. Chem. Phys.
78
,
7217
(
1983
).
93.
R.
Moszynski
,
T.
Korona
,
T. G. A.
Heijmen
,
P. E. S.
Wormer
,
A.
van der Avoird
, and
B.
Schramm
,
Pol. J. Chem.
72
,
1479
(
1998
).
94.
T. G. A.
Heijmen
,
T.
Korona
,
R.
Moszynski
,
P. E. S.
Wormer
, and
A.
van der Avoird
,
J. Chem. Phys.
107
,
902
(
1997
).
95.
K. P.
Huber
and
G.
Herzberg
, “
Constants of diatomic molecules
,” (data prepared by J. W. Gallagher and R. D. Johnson III) in
NIST Chemistry WebBook
,
NIST Standard Reference Database No. 69
, edited by
P. J.
Linstrom
and
W. G.
Mallard
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2005
), see http://webbook.nist.gov.
96.
C. W.
Gibby
,
C. C.
Tanner
, and
I.
Masson
,
Proc. R. Soc. London, Ser. A
122
,
283
(
1929
).
97.
C. M.
Knobler
,
J. J. M.
Beenakker
, and
H. F. P.
Knaap
,
Physica
25
,
909
(
1959
).
98.
J.
Brewer
and
G. W.
Vaughn
,
J. Chem. Phys.
50
,
2960
(
1969
).
99.
T.
Kihara
,
Y.
Midzuno
, and
T.
Shizume
,
J. Phys. Soc. Jpn.
10
,
249
(
1955
).
100.
101.
M.
Jeziorska
,
W.
Cencek
,
K.
Patkowski
,
B.
Jeziorski
, and
K.
Szalewicz
,
J. Chem. Phys.
127
,
124303
(
2007
).

Supplementary Material

You do not currently have access to this content.