We report the first high spectral resolution laboratory measurements of simulated oxygen A-band night glow. Our static discharge system approximates the conditions of the mesospheric oxygen night glow – suggesting O(1D) + O2 (

$X ^3\Sigma _g^-$
X3Σg⁠) → O(3P) + O2 (
$b ^1\Sigma _g^+$
b1Σg+
) → O2 (
$X ^3\Sigma _g^-$
X3Σg
) + hν as the primary source of the emission. Additionally, use of the static cell has enabled us to collect spectra for all six molecular oxygen isotopologues using isotopically enriched samples. The (0,0), (0,1), and (1,1) bX vibrational bands were observed for all six isotopologues. The (1,2) and (2,2) bands were also observed for 16O2. The frequencies of the observed (0,1) transitions resolved discrepancies in Raman data for 16O17O, 17O2, and 17O18O, enabling us to improve the vibrational parameterization of the ground electronic state global fit. Rotationally resolved intensities were determined for the (0,0), (0,1), and (1,1) bands. The experimental band intensity ratios I(0,0)/I(0,1) = 13.53(24); I(1,1)/I(1,0) = 11.9(65); I(0,0)/I(0,2) = 503(197); and I(1,1)/I(1,2) = 5.6(19) are in excellent agreement with the recent mesospheric remote sensing data and calculated Franck-Condon factors.

1.
S.
Yu
,
C. E.
Miller
,
B. J.
Drouin
, and
H. S. P.
Müller
,
J. Chem. Phys.
137
,
024304
(
2012
).
2.
B. J.
Drouin
,
H.
Gupta
,
S.
Yu
,
C. E.
Miller
, and
H. S. P.
Müller
,
J. Chem. Phys.
137
,
024305
(
2012
).
3.
T. G.
Slanger
, private communication (
2011
), data published in Ref. 1.
4.
M.-F.
Merienne
,
A.
Jenourier
,
B.
Coquart
,
M.
Carleer
,
S.
Fally
,
R.
Colin
,
A. C.
Vandaele
, and
C.
Hermans
,
J. Mol. Spectrosc.
207
,
120
(
2001
).
5.
P. C.
Cosby
,
B. D.
Sharpee
,
T. G.
Slanger
,
D. L.
Huestis
, and
R. W.
Hauschik
,
J. Geophys. Res.
111
,
A12307
, doi: (
2006
).
6.
T. G.
Slanger
,
P. C.
Cosby
,
D. L.
Huestis
, and
B. D.
Sharpe
,
J. Atmos. Sol.-Terr. Phys.
68
,
1426
1440
(
2006
).
7.
H. G. M.
Edwards
,
E. A. M.
Good
, and
D. A.
Long
,
J. Chem. Soc., Faraday Trans. 2
72
,
865
870
(
1976
).
8.
H. G. M.
Edwards
,
D. W.
Farwell
,
D. A.
Long
, and
K. A. B.
Najm
,
Indian J. Pure Appl. Phys.
16
,
354
(
1978
).
9.
H. G. M.
Edwards
,
D. A.
Long
, and
K. A. B.
Najm
,
J. Raman Spectrosc.
17
,
431
(
1986
).
10.
H. G. M.
Edwards
,
D. A.
Long
,
K. A. B.
Najm
, and
M.
Thomsen
,
J. Raman Spectrosc.
10
,
60
(
1981
).
11.
A. B.
Christensen
,
J.-H.
Yee
,
R. L.
Bishop
,
S. A.
Buzien
,
J. H.
Hecht
,
G.
Sivjee
, and
A. W.
Stephan
,
J. Geophys. Res.
117
,
A04315
, doi: (
2012
).
12.
J.-H.
Yee
,
R.
DeMajistre
, and
F.
Morgan
,
Can. J. Phys.
90
,
769
784
(
2012
).
13.
J. J.
O'Brien
,
E. C.
O'Brien
, and
L. C.
O'Brien
,
J. Mol. Spectrosc.
273
,
34
36
(
2012
).
14.
See supplementary material at http://dx.doi.org/10.1063/1.4821759 for a detailed list of the measurements and model.
15.
D. J.
Robichaud
,
J. T.
Hodges
,
P.
Maslowski
,
L. Y.
Yeung
,
M.
Okumura
,
C. E.
Miller
, and
L. R.
Brown
,
J. Mol. Spectrosc.
251
,
27
(
2008
).
16.
D. J.
Robichaud
,
J. T.
Hodges
,
D.
Lisak
,
C. E.
Miller
, and
M.
Okumura
,
J. Phys. Chem. A
113
,
13089
(
2009
).
17.
D. A.
Long
,
D. K.
Havey
,
S.
Yu
,
M.
Okumura
,
C. E.
Miller
, and
J. T.
Hodges
,
J. Quant. Spectrosc. Radiat. Transf.
112
,
2527
(
2011
).
18.
O.
Leshchishina
,
S.
Kassi
,
I. E.
Gordon
,
L. S.
Rothman
,
L.
Wang
, and
A.
Campargue
,
J. Quant. Spectrosc. Radiat. Transf.
111
,
2236
(
2010
).
19.
O.
Leshchishina
,
S.
Kassi
,
I. E.
Gordon
,
S.
Yu
, and
A.
Campargue
,
J. Quant. Spectrosc. Radiat. Transf.
112
,
1257
(
2011
).
20.
J.
Domyslawska
,
S.
Wojtewicz
,
D.
Lisak
,
A.
Cygan
,
F.
Ozimek
,
K.
Stec
,
C.
Radzewicz
,
R. S.
Trawinski
, and
R.
Ciurylo
,
J. Chem. Phys.
136
,
024201
(
2012
).
21.
J. F.
Noxon
,
Can. J. Phys.
39
,
1110
1119
(
1961
).
22.
P. A.
Fraser
,
W. R.
Jarmain
, and
R. W.
Nicholls
,
Ap. J.
119
,
286
(
1954
).
23.
R. W.
Nicholls
,
J. Res. Natl. Bur. Stand., Sect. A
69A
,
369
(
1965
).
24.
H. D.
Babcock
and
L.
Herzberg
,
Ap. J.
108
,
167
190
(
1948
).
25.
P. H.
Krupenie
,
J. Phys. Chem. Ref. Data
1
,
423
(
1972
).
26.
N. P.
Vagin
,
A. A.
Ionin
,
I. V.
Kochetov
,
A. P.
Napartovich
,
Yu. P.
Podmar'kov
,
M. P.
Frolov
, and
N. N.
Yuryshev
,
Quantum Electron.
35
(
4
),
378
384
(
2005
).
27.
J. M.
Blatt
,
J. Comput. Phys.
1
,
382
396
(
1967
).
28.
R. J. Le
Roy
, “
RKR 2.0: A computer program implementing the first-order RKR method for determining diatomic molecule potential energy curves
,”
University of Waterloo Chemical Physics Research
Report No. CP-657R,
2004
. The source code and manual for this program may be obtained for the “Computer Programs” link at http://leroy.uwaterloo.ca.
29.
R. J. Le
Roy
, “
LEVEL 8.0: A computer program for solving the radial Schrödinger equation for bound and quasibound levels
,”
University of Waterloo Chemical Physics Research
Report No. CP-663,
2007
. See http://leroy.uwaterloo.ca/programs.
30.
L. C.
Lee
and
T. G.
Slanger
,
J. Chem. Phys.
69
,
4053
(
1978
).
31.
D. A.
Pejaković
,
R. A.
Copeland
,
T. G.
Slanger
, and
K. S.
Kalogerakis
,
Chem. Phys. Lett.
403
,
372
377
(
2005
).

Supplementary Material

You do not currently have access to this content.