This paper presents the implementation of 3D IR spectroscopy by adding a second pump beam to a two-beam 2D IR spectrometer. An independent mid-IR pulse shaper is used for each pump beam, which can be programmed to collect its corresponding dimension in either the frequency or time-domains. Due to the phase matching geometry employed here, absorptive 3D IR spectra are automatically obtained, since all four of the rephasing and non-rephasing signals necessary to generate absorptive spectra are collected simultaneously. Phase cycling is used to isolate the fifth-order from the third-order signals. The method is demonstrated on tungsten hexacarbonyl (W(CO)6) and dicarbonylacetylacetonato rhodium (I), for which the eigenstates are extracted up to the third excited state. Pulse shaping affords a high degree of control over 3D IR experiments by making possible mixed time- and frequency-domain experiments, fast data acquisition and straightforward implementation.

1.
H. H.
Mantsch
and
D.
Chapman
,
Infrared Spectroscopy of Biomolecules
(
Wiley-Liss
,
New York
,
1996
).
2.
A. A.
Christy
,
Y.
Ozaki
, and
V. G.
Gregoriou
,
Modern Fourier Transform Infrared Spectroscopy
(
Elsevier
,
2001
).
3.
M. D.
Fayer
,
Ultrafast Infrared Vibrational Spectroscopy
(
CRC Press
,
New York
,
2013
).
4.
M.
Grechko
and
M. T.
Zanni
,
J. Chem. Phys.
137
,
184202
(
2012
).
5.
P.
Hamm
,
M.
Lim
,
M.
Asplund
, and
R. M.
Hochstrasser
,
Chem. Phys. Lett.
301
,
167
(
1999
).
6.
T.
Witte
,
J. S.
Yeston
,
M.
Motzkus
,
E. J.
Heilweil
, and
K. L.
Kompa
,
Chem. Phys. Lett.
392
,
156
(
2004
).
7.
E. C.
Fulmer
,
F.
Ding
,
P.
Mukherjee
, and
M. T.
Zanni
,
Phys. Rev. Lett.
94
,
067402
(
2005
).
8.
J. C.
Wright
,
Annu. Rev. Phys. Chem.
62
,
209
(
2011
).
9.
M. C.
Thielges
and
M. D.
Fayer
,
J. Phys. Chem. A
115
,
9714
(
2011
).
10.
F.
Ding
and
M. T.
Zanni
,
Chem. Phys.
341
,
95
(
2007
).
11.
S.
Garrett-Roe
and
P.
Hamm
,
J. Chem. Phys.
130
,
164510
(
2009
).
12.
D. B.
Turner
,
K. W.
Stone
,
K.
Gundogdu
, and
K. A.
Nelson
,
J. Chem. Phys.
131
,
144510
(
2009
).
13.
A. F.
Fidler
,
E.
Harel
, and
G. S.
Engel
,
J. Phys. Chem. Lett.
1
,
2876
(
2010
).
14.
Z.
Zhang
,
K. L.
Wells
, and
H.-S.
Tan
,
Opt. Lett.
37
,
5058
(
2012
).
15.
Z.
Zhang
,
K. L.
Wells
,
M. T.
Seidel
, and
H.-S.
Tan
, “
Fifth-order three-dimensional electronic spectroscopy using a pump–probe configuration
,”
J. Phys. Chem. B
(to be published).
16.
H.
Li
,
A. D.
Bristow
,
M. E.
Siemens
,
G.
Moody
, and
S. T.
Cundiff
,
Nat. Commun.
4
,
1390
(
2013
).
17.
P.
Hamm
and
M.
Zanni
,
Concepts and Methods of 2D Infrared Spectroscopy
(
Cambridge University Press
,
Cambridge
,
2011
).
18.
M.
Khalil
,
N.
Demirdöven
, and
A.
Tokmakoff
,
Phys. Rev. Lett.
90
,
047401
(
2003
).
19.
P.
Hamm
,
J. Chem. Phys.
124
,
124506
(
2006
).
20.
S.
Garrett-Roe
,
F.
Perakis
,
F.
Rao
, and
P.
Hamm
,
J. Phys. Chem. B
115
,
6976
(
2011
).
21.
F.
Perakis
,
J. A.
Borek
, and
P.
Hamm
,
J. Chem. Phys.
139
,
014501
(
2013
).
22.
P.
Hamm
,
M.
Lim
, and
R. M.
Hochstrasser
,
J. Phys. Chem. B
102
,
6123
(
1998
).
23.
S.-H.
Shim
,
D. B.
Strasfeld
,
Y. L.
Ling
, and
M. T.
Zanni
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
14197
(
2007
).
24.
F.
Ding
,
P.
Mukherjee
, and
M. T.
Zanni
,
Opt. Lett.
31
,
2918
(
2006
).
25.
V.
Volkov
,
R.
Schanz
, and
P.
Hamm
,
Opt. Lett.
30
,
2010
(
2005
).
26.
G. D.
Goodno
and
R. J. D.
Miller
,
J. Phys. Chem. A
103
,
10619
(
1999
).
27.
U.
Selig
,
F.
Langhojer
,
F.
Dimler
,
T.
Löhrig
,
C.
Schwarz
,
B.
Gieseking
, and
T.
Brixner
,
Opt. Lett.
33
,
2851
(
2008
).
28.
C. T.
Middleton
,
A. M.
Woys
,
S. S.
Mukherjee
, and
M. T.
Zanni
,
Methods
52
,
12
(
2010
).
29.
S.-H.
Shim
and
M. T.
Zanni
,
Phys. Chem. Chem. Phys.
11
,
748
(
2009
).
30.
S. K. K.
Kumar
,
A.
Tamimi
, and
M. D.
Fayer
,
J. Chem. Phys.
137
,
184201
(
2012
).
31.
W.
Rock
,
Y.-L.
Li
,
P.
Pagano
, and
C. M.
Cheatum
,
J. Phys. Chem. A
117
,
6073
(
2013
).
32.
R.
Bloem
,
S.
Garrett-Roe
,
H.
Strzalka
,
P.
Hamm
, and
P.
Donaldson
,
Opt. Express
18
,
27067
(
2010
).
33.
E. J.
Heilweil
,
R. R.
Cavanagh
, and
J. C.
Stephenson
,
Chem. Phys. Lett.
134
,
181
(
1987
).
34.
S. M.
Arrivo
,
T. P.
Dougherty
,
W. T.
Grubbs
, and
E. J.
Heilweil
,
Chem. Phys. Lett.
235
,
247
(
1995
).
35.
D.
Zimdars
,
A.
Tokmakoff
,
S.
Chen
,
S. R.
Greenfield
,
M. D.
Fayer
,
T. I.
Smith
, and
H. A.
Schwettman
,
Phys. Rev. Lett.
70
,
2718
(
1993
).
36.
A.
Tokmakoff
,
B.
Sauter
, and
M. D.
Fayer
,
J. Chem. Phys.
100
,
9035
(
1994
).
37.
K. D.
Rector
and
M. D.
Fayer
,
Int. Rev. Phys. Chem.
17
,
261
(
1998
).
38.
J. P.
Galaup
,
M.
Broquier
,
C.
Crépin
,
H.
Dubost
,
J. M.
Ortega
,
F.
Chaput
, and
J. P.
Boilot
,
J. Lumin.
86
,
363
(
2000
).
39.
M.
Banno
,
S.
Sato
,
K.
Iwata
, and
H.-O.
Hamaguchi
,
Chem. Phys. Lett.
412
,
464
(
2005
).
40.
M.
Broquier
,
C.
Crépin
,
H.
Dubost
, and
J. P.
Galaup
,
Chem. Phys.
341
,
207
(
2007
).
41.
D. B.
Strasfeld
,
S.-H.
Shim
, and
M. T.
Zanni
,
Phys. Rev. Lett.
99
,
038102
(
2007
).
42.
S.
Yan
,
M. T.
Seidel
, and
H.-S.
Tan
,
Chem. Phys. Lett.
517
,
36
(
2011
).
43.
R.
Thon
,
W.
Chin
,
J.-P.
Galaup
,
A.
Ouvrard
,
B.
Bourguignon
, and
C.
Crépin
,
J. Phys. Chem. A
117
,
8145
(
2013
).
44.
S. K. K.
Kumar
,
A.
Tamimi
, and
M. D.
Fayer
,
J. Am. Chem. Soc.
135
,
5118
(
2013
).
45.
E. J.
Heilweil
,
R. R.
Cavanagh
, and
J. C.
Stephenson
,
J. Chem. Phys.
89
,
230
(
1988
).
46.
J. D.
Beckerle
,
M. P.
Casassa
,
R. R.
Cavanagh
,
E. J.
Heilweil
, and
J. C.
Stephenson
,
Chem. Phys.
160
,
487
(
1992
).
47.
M.
Khalil
,
N.
Demirdoven
, and
A.
Tokmakoff
,
J. Chem. Phys.
121
,
362
(
2004
).
48.
N. A.
Mathew
,
L. A.
Yurs
,
S. B.
Block
,
A. V.
Pakoulev
,
K. M.
Kornau
, and
J. C.
Wright
,
J. Phys. Chem. A
113
,
9261
(
2009
).
49.
K. D.
Rector
,
A. S.
Kwok
,
C.
Ferrante
,
A.
Tokmakoff
,
C. W.
Rella
, and
M. D.
Fayer
,
J. Chem. Phys.
106
,
10027
(
1997
).
50.
O.
Golonzka
,
M.
Khalil
,
N.
Demirdoven
, and
A.
Tokmakoff
,
J. Chem. Phys.
115
,
10814
(
2001
).
51.
V.
Cervetto
,
J.
Helbing
,
J.
Bredenbeck
, and
P.
Hamm
,
J. Chem. Phys.
121
,
5935
(
2004
).
52.
S.-H.
Shim
,
D. B.
Strasfeld
, and
M. T.
Zanni
,
Opt. Express
14
,
13120
(
2006
).
53.
D. R.
Skoff
,
J. E.
Laaser
,
S. S.
Mukherjee
,
C. T.
Middleton
, and
M. T.
Zanni
,
Chem. Phys.
422
,
8
(
2013
).
54.
S.
Mukamel
,
Principles of Non Linear Spectroscopy
(
Oxford University Press
,
New York
,
1999
).
55.
R. R.
Ernst
,
G.
Bodenhausen
, and
A.
Wokaun
,
Principles of Nuclear Magnetic Resonance in One and Two Dimensions
(
Oxford University Press
,
Oxford
,
1987
).
56.
E. C.
Fulmer
,
F.
Ding
, and
M. T.
Zanni
,
J. Chem. Phys.
122
,
034302
(
2005
).
57.
S. F. A.
Kettle
and
I.
Paul
, in
Advances in Organometallic Chemistry
, edited by
F. G. A.
Stone
and
W.
Robert
(
Academic Press
,
1972
), p.
199
.
58.
F.
Ding
,
E. C.
Fulmer
, and
M. T.
Zanni
,
J. Chem. Phys.
123
,
094502
(
2005
).
59.
S.
Garrett-Roe
and
P.
Hamm
,
Acc. Chem. Res.
42
,
1412
(
2009
).
60.
S.
Garrett-Roe
and
P.
Hamm
,
J. Chem. Phys.
128
,
104507
(
2008
).
61.
D. B.
Strasfeld
,
Y. L.
Ling
,
S.-H.
Shim
, and
M. T.
Zanni
,
J. Am. Chem. Soc.
130
,
6698
(
2008
).
You do not currently have access to this content.