On the basis of a versatile mode-coupling theory (MCT) method developed in Paper I [C. Contreras Aburto and G. Nägele, J. Chem. Phys.139, 134109 (2013)], we investigate the concentration dependence of conduction-diffusion linear transport properties for a symmetric binary electrolyte solution. The ions are treated in this method as charged Brownian spheres, and the solvent-mediated ion-ion hydrodynamic interactions are accounted for also in the ion atmosphere relaxation effect. By means of a simplified solution scheme, convenient semi-analytic MCT expressions are derived for the electrophoretic mobilities, and the molar conductivity, of an electrolyte mixture with equal-sized ions. These expressions reduce to the classical Debye-Falkenhagen-Onsager-Fuoss results in the limit of very low ion concentration. The MCT expressions are numerically evaluated for a binary electrolyte, and compared to experimental data and results by another theoretical method. Our analysis encloses, in addition, the electrolyte viscosity. To analyze the dynamic influence of the hydration shell, the significance of mixed slip-stick hydrodynamic surface boundary conditions, and the effect of solvent permeability are explored. For the stick boundary condition employed in the hydrodynamic diffusivity tensors, our theoretical results for the molar conductivity and viscosity of an aqueous 1:1 electrolyte are in good overall agreement with reported experimental data for aqueous NaCl solutions, for concentrations extending even up to two molar.

1.
A.
Anderko
,
P.
Wang
, and
P.
Rafal
,
Fluid Phase Equilib.
194–197
,
123
(
2002
).
2.
J. M. G.
Barthel
,
H.
Krienke
, and
W.
Kunz
,
Physical Chemistry of Electrolyte Solutions
,
Topics in Physical Chemistry
, Vol.
5
(
Steinkopff
,
Darmstadt
,
1998
).
3.
H.
Falkenhagen
and
W.
Ebeling
, in
Theorie der Elektrolyte
, edited by
S.
Hirzel
(
Verlag
,
Stuttgart
,
1971
).
4.
H.
Falkenhagen
and
M.
Dole
,
Phys. Z
30
,
611
(
1929
).
5.
L.
Onsager
and
R. M.
Fuoss
,
J. Phys. Chem.
36
,
2689
(
1932
).
6.
H.
Falkenhagen
and
E. L.
Vernon
,
Philos. Mag. Series 7
74
,
537
(
1932
).
7.
L.
Onsager
,
Ann. N.Y. Acad. Sci.
46
,
241
(
1945
).
8.
L.
Onsager
and
S. K.
Kim
,
J. Phys. Chem.
61
,
215
(
1957
).
9.
J.
Hubbard
and
L.
Onsager
,
J. Chem. Phys.
67
,
4850
(
1977
).
10.
J.
Hubbard
and
P.
Wolynes
,
J. Chem. Phys.
69
,
998
(
1978
).
11.
B.
Bagchi
,
J. Chem. Phys.
109
,
3989
(
1998
).
12.
P.
Attard
,
Phys. Rev. E
48
,
3604
(
1993
).
13.
J. P.
Hansen
and
I. R.
Mc Donald
,
Theory of Simple Liquids
, 3rd ed. (
Elsevier
,
Amsterdam
,
2006
).
14.
G.
Nägele
,
Phys. Rep.
272
,
215
(
1996
).
15.
J.-F.
Dufreche
,
O.
Bernard
, and
P.
Turq
,
J. Mol. Liq.
118
,
189
(
2005
).
16.
W.
Ebeling
,
R.
Feistel
,
G.
Kelbg
, and
R.
Sandig
,
J. Non-Equilib. Thermodyn.
3
,
11
(
1978
).
17.
W.
Ebeling
and
J.
Rose
,
J. Solution Chem.
10
,
599
(
1981
).
18.
O.
Bernard
,
W.
Kunz
,
P.
Turq
, and
L.
Blum
,
J. Phys. Chem.
96
,
3833
(
1992
).
19.
O.
Bernard
,
W.
Kunz
,
P.
Turq
, and
L.
Blum
,
J. Phys. Chem.
96
,
398
(
1992
).
20.
S.
Durand-Vidal
,
P.
Turq
,
O.
Bernard
,
C.
Treiner
, and
L.
Blum
,
Physica A
231
,
123
(
1996
).
21.
S.
Durand-Vidal
,
P.
Turq
, and
O.
Bernard
,
J. Phys. Chem.
100
,
17345
(
1996
).
22.
J. F.
Dufreche
,
O.
Bernard
,
S.
Durand-Vidal
, and
P.
Turq
,
J. Phys. Chem. B
109
,
9873
(
2005
).
23.
G. M.
Roger
,
S.
Durand-Vidal
,
O.
Bernard
, and
P.
Turq
,
J. Phys. Chem. B
113
,
8670
(
2009
).
24.
L.
Blum
and
J. S.
Høye
,
J. Phys. Chem.
81
,
1311
(
1977
).
25.
K.
Hiroike
,
Mol. Phys.
33
,
1195
(
1977
).
26.
A.
Chandra
,
R.
Biswas
, and
B.
Bagchi
,
J. Am. Chem. Soc.
121
,
4082
(
1999
).
27.
A.
Chandra
and
B.
Bagchi
,
J. Chem. Phys.
110
,
10024
(
1999
).
28.
A.
Chandra
and
B.
Bagchi
,
J. Phys. Chem. B
104
,
9067
(
2000
).
29.
A.
Chandra
and
B.
Bagchi
,
J. Chem. Phys.
113
,
3226
(
2000
).
30.
C.
Contreras-Aburto
and
G.
Nägele
,
J. Phys.: Condens. Matter
24
,
464108
(
2012
).
31.
M. S.
Wertheim
,
Phys. Rev. Lett.
10
,
321
(
1963
).
32.
E.
Waisman
and
J. L.
Lebowitz
,
J. Chem. Phys.
56
,
3093
(
1972
).
33.
J. K. G.
Dhont
,
An Introduction to Dynamics of Colloids
(
Elsevier
,
Amsterdam
,
1996
), Vol.
2
.
34.
S.
Kim
and
S.
Karilla
,
Microhydrodynamics
(
Butterworth-Heinemann
,
Boston
,
1991
).
35.
R. B.
Jones
and
G. S.
Burfield
,
Physica A
111
,
562
(
1982
).
36.
D. J.
Jeffrey
and
Y.
Onishi
,
J. Fluid Mech.
139
,
261
(
1984
).
37.
J.
Rotne
and
S.
Prager
,
J. Chem. Phys.
50
,
4831
(
1969
).
38.
W. T.
Gilleland
,
S.
Torquato
, and
W. B.
Russel
,
J. Fluid Mech.
667
,
403
(
2011
).
39.
M.
Heinen
,
A. J.
Banchio
, and
G.
Nägele
,
J. Chem. Phys.
135
,
154504
(
2011
).
40.
A. J.
Banchio
and
G.
Nägele
,
J. Chem. Phys.
128
,
104903
(
2008
).
41.
B.
Cichocki
,
M.
Ekiel-Jezewska
, and
E.
Wajnryb
,
J. Chem. Phys.
111
,
3265
(
1999
).
42.
M.
Heinen
,
P.
Holmqvist
,
A. J.
Banchio
, and
G.
Nägele
,
J. Appl. Crystallogr.
43
,
970
(
2010
).
43.
E. L.
Cussler
,
Diffusion: Mass Transfer in Fluid Systems
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
1997
).
44.
G.
Nägele
,
J.
Bergenholtz
, and
J. K. G.
Dhont
,
J. Chem. Phys.
110
,
7037
(
1999
).
45.
G.
Nägele
and
J. K. G.
Dhont
,
J. Chem. Phys.
108
,
9566
(
1998
).
46.
R.
Mills
and
V.
Lobo
,
Self-diffusion in Electrolyte Solutions
(
Elsevier
,
Amsterdam
,
1989
).
47.
G. H.
Golub
and
C. F.
Van Loan
,
Matrix Computations
, 3rd ed. (
Johns Hopkins University Press
,
Baltimore
,
1996
).
48.
S. R.
Searle
,
Matrix Algebra Useful for Statistics
,
Wiley Series in Probability and Statistics
(
Wiley
,
2006
).
49.
P.
Szymczak
and
B.
Chichocki
,
Europhys. Lett.
59
,
465
(
2002
).
50.
E.
Wajnryb
,
P.
Szymczak
, and
B.
Cichocki
,
Physica A
335
,
339
(
2004
).
51.
M.
Jardat
,
O.
Bernard
,
P.
Turq
, and
G. R.
Kneller
,
J. Chem. Phys.
110
,
7993
(
1999
).
52.
D. G.
Miller
,
J. Phys. Chem.
70
,
2639
(
1966
).
53.
P.
Atkins
and
J.
de Paula
,
Physical Chemistry
, 7th ed. (
Oxford University Press
,
2002
).
54.
B. U.
Felderhof
,
Physica A
84
,
569
(
1976
).
55.
R. B.
Jones
and
R.
Schmitz
,
Physica A
149
,
373
(
1988
).
56.
B.
Cichocki
,
B.
Felderhof
, and
R.
Schmitz
,
PCH, PhysicoChem. Hydrodyn.
10
,
383
(
1988
).
57.
P.
Reuland
,
B. U.
Felderhof
, and
R. B.
Jones
,
Physica A
93
,
465
(
1978
).
58.
M. U.
Bäbler
,
J.
Sefcik
,
M.
Morbidelli
, and
J.
Bałdyga
,
Phys. Fluids
18
,
013302
(
2006
).
59.
R. B.
Jones
,
Physica A
92
,
571
(
1978
).
60.
G. C.
Abade
,
B.
Cichocki
,
M. L.
Ekiel-Jezewska
,
G.
Nägele
, and
E.
Wajnryb
,
J. Chem. Phys.
132
,
014503
(
2010
).
61.
G. C.
Abade
,
B.
Cichocki
,
M. L.
Ekiel-Jezewska
,
G.
Nägele
, and
E.
Wajnryb
,
J. Chem. Phys.
133
,
084906
(
2010
).
62.
G. C.
Abade
,
B.
Cichocki
,
M. L.
Ekiel-Jezewska
,
G.
Nägele
, and
E.
Wajnryb
,
J. Chem. Phys.
136
,
104902
(
2012
).
63.
J.
Anderson
,
P.
McKenzie
, and
R.
Webber
,
Langmuir
7
,
162
(
1991
).
64.
B.
Cichocki
,
M. L.
Ekiel-Jezewska
, and
E.
Wajnryb
,
J. Chem. Phys.
119
,
606
(
2003
).
65.
B.
Cichocki
and
B. U.
Felderhof
,
J. Chem. Phys.
89
,
1049
(
1988
).
66.
D.
Out
and
J.
Los
,
J. Solution Chem.
9
,
19
(
1980
).
67.
In Fig. 7 of our work on viscosity,30 the concentration values of the viscosity data for NaCl in water were mistakenly multiplied by a factor of two. However, all the theoretical results shown there are correct.
68.
A. J. C.
Ladd
,
J. Chem. Phys.
93
,
3484
(
1990
).
69.
J.
Brady
and
L.
Durlofski
,
Phys. Fluids
31
,
717
(
1988
).
70.
J. F.
Dufreche
,
O.
Bernard
, and
P.
Turq
,
J. Chem. Phys.
116
,
2085
(
2002
).
71.
J. F.
Dufreche
,
O.
Bernard
,
M.
Jardat
, and
P.
Turq
,
J. Chem. Phys.
118
,
8116
(
2003
).
72.
B. U.
Felderhof
,
J. Chem. Phys.
118
,
8114
(
2003
).
73.
G.-H.
Gao
,
H.-B.
Shi
, and
Y.-X.
Yu
,
Fluid Phase Equilib.
256
,
105
(
2007
).
74.
F. J.
Stillinger
and
R.
Lovett
,
J. Chem. Phys.
49
,
1991
(
1968
).
75.
D. J.
Mitchell
,
D. A.
McQuarrie
,
A.
Szabo
, and
J.
Groeneveld
,
J. Stat. Phys.
17
,
15
(
1977
).
76.
P. P.
Ewald
,
Ann. Phys. (Berlin)
369
,
253
(
1921
).
77.
D.
Wolf
,
P.
Keblinski
,
S. R.
Phillpot
, and
J.
Eggebrecht
,
J. Chem. Phys.
110
,
8254
(
1999
).
78.
J.
Falcón-González
,
R.
Castañeda-Priego
, and
A.
Gil-Villegas
, personal communication (
2012
).
79.
V.
Lobaskin
and
P.
Linse
,
J. Chem. Phys.
109
,
3530
(
1998
).
80.
V.
Lobaskin
and
P.
Linse
,
J. Chem. Phys.
111
,
4300
(
1999
).
81.
G.
Nägele
,
M.
Heinen
,
A. J.
Banchio
, and
C.
Contreras-Aburto
, “
Electrokinetic and hydrodynamic properties of charged-particles systems: From small electrolyte ions to large colloids
,”
Eur. Phys. J. E
(to be published).
82.
J.
Gapinski
,
A.
Wilk
,
A.
Patkowski
,
W.
Häußler
,
A. J.
Banchio
,
R.
Pecora
, and
G.
Nägele
,
J. Chem. Phys.
123
,
054708
(
2005
).
83.
M.
Heinen
,
F.
Zanini
,
F.
Roosen-Runge
,
D.
Fedunova
,
F.
Zhang
,
M.
Hennig
,
T.
Seydel
,
R.
Schweins
,
M.
Sztucki
,
M.
Antalik
 et al,
Soft Matter
8
,
1404
(
2012
).
84.
M. G.
McPhie
and
G.
Nägele
,
J. Chem. Phys.
127
,
034906
(
2007
).
85.
C.
Contreras Aburto
and
G.
Nägele
,
J. Chem. Phys.
139
,
134109
(
2013
).
You do not currently have access to this content.