We develop a general method for calculating conduction-diffusion transport properties of strong electrolyte mixtures, including specific conductivities, steady-state electrophoretic mobilities, and self-diffusion coefficients. The ions are described as charged Brownian spheres, and the solvent-mediated hydrodynamic interactions (HIs) are also accounted for in the non-instantaneous ion atmosphere relaxation effect. A linear response expression relating long-time partial mobilities to associated dynamic structure factors is employed in our derivation of a general mode coupling theory (MCT) method for the conduction-diffusion properties. A simplified solution scheme for the MCT method is discussed. Analytic results are obtained for transport coefficients of pointlike ions which, for very low ion concentrations, reduce to the Deby-Falkenhagen-Onsager-Fuoss limiting law expressions. As an application, an unusual non-monotonic concentration dependence of the polyion electrophoretic mobility in a mixture of two binary electrolytes is discussed. In addition, leading-order extensions of the limiting law results are derived with HIs included. The present method complements a related MCT method by the authors for the electrolyte viscosity and shear relaxation function [C. Contreras-Aburto and G. Nägele, J. Phys.: Condens. Matter24, 464108 (2012)], so that a unifying scheme for conduction-diffusion and viscoelastic properties is obtained. We present here the general framework of the method, illustrating its versatility for conditions where fully analytic results are obtainable. Numerical results for conduction-diffusion properties and the viscosity of concentrated electrolytes are presented in Paper II [C. Contreras Aburto and G. Nägele, J. Chem. Phys.139, 134110 (2013)].

1.
G.
Nägele
,
M.
Heinen
,
A. J.
Banchio
, and
C.
Contreras-Aburto
, “
Electrokinetic and hydrodynamic properties of charged-particles systems: From small electrolyte ions to large colloids
,”
Eur. Phys. J. E
(to be published).
2.
J. M. G.
Barthel
,
H.
Krienke
, and
W.
Kunz
,
Physical Chemistry of Electrolyte Solutions
,
Topics in Physical Chemistry
Vol.
5
(
Steinkopff
,
Darmstadt
,
1998
).
3.
H.
Falkenhagen
and
W.
Ebeling
,
Theorie der Elektrolyte
(
S. Hirzel Verlag
,
Stuttgart
,
1971
).
4.
L.
Onsager
and
R. M.
Fuoss
,
J. Phys. Chem.
36
,
2689
(
1932
).
5.
L.
Onsager
and
S. K.
Kim
,
J. Phys. Chem.
61
,
215
(
1957
).
6.
L.
Onsager
,
Ann. N.Y. Acad. Sci.
46
,
241
(
1945
).
7.
H.
Falkenhagen
and
E. L.
Vernon
,
Philos. Mag. Ser. 7
14
,
537
(
1932
).
8.
P.
Attard
,
Phys. Rev. E
48
,
3604
(
1993
).
9.
J. P.
Hansen
and
I. R.
Mc Donald
,
Theory of Simple Liquids
, 3rd ed. (
Elsevier
,
Amsterdam
,
2006
).
10.
M.
Kollmann
and
G.
Nägele
,
J. Chem. Phys.
113
,
7672
(
2000
).
11.
M. G.
McPhie
and
G.
Nägele
,
J Phys.: Condens. Matter
16
,
S4021
(
2004
).
12.
M. G.
McPhie
and
G.
Nägele
,
J. Chem. Phys.
127
,
034906
(
2007
).
13.
A. J.
Banchio
,
M. G.
McPhie
, and
G.
Nägele
,
J Phys.: Condens. Matter
20
,
404213
(
2008
).
14.
W.
Ebeling
,
R.
Feistel
,
G.
Kelbg
, and
R.
Sandig
,
J. Non-Equilib. Thermodyn.
3
,
11
(
1978
).
15.
D.
Kremp
,
W.
Ebeling
,
H.
Krienke
, and
R.
Sandig
,
J. Stat. Phys.
33
,
99
(
1983
).
16.
O.
Bernard
,
W.
Kunz
,
P.
Turq
, and
L.
Blum
,
J. Phys. Chem.
96
,
3833
(
1992
).
17.
S.
Durand-Vidal
,
P.
Turq
,
O.
Bernard
,
C.
Treiner
, and
L.
Blum
,
Physica A
231
,
123
(
1996
).
18.
S.
Durand-Vidal
,
P.
Turq
, and
O.
Bernard
,
J. Phys. Chem.
100
,
17345
(
1996
).
19.
J.-F.
Dufrêche
,
O.
Bernard
,
S.
Durand-Vidal
, and
P.
Turq
,
J. Phys. Chem. B
109
,
9873
(
2005
).
20.
G. M.
Roger
,
S.
Durand-Vidal
,
O.
Bernard
, and
P.
Turq
,
J. Phys. Chem. B
113
,
8670
(
2009
).
21.
O.
Bernard
,
W.
Kunz
,
P.
Turq
, and
L.
Blum
,
J. Phys. Chem.
96
,
398
(
1992
).
22.
J. F.
Dufrêche
,
O.
Bernard
, and
P.
Turq
,
J. Chem. Phys.
116
,
2085
(
2002
).
23.
J.-F.
Dufrêche
,
O.
Bernard
, and
P.
Turq
,
J. Mol. Liq.
118
,
189
(
2005
).
24.
B. U.
Felderhof
,
J. Chem. Phys.
118
,
8114
(
2003
).
25.
J. F.
Dufrêche
,
O.
Bernard
,
M.
Jardat
, and
P.
Turq
,
J. Chem. Phys.
118
,
8116
(
2003
).
26.
J. F.
Dufrêche
,
M.
Jardat
,
P.
Turq
, and
B.
Bagchi
,
J. Phys. Chem. B
112
,
10264
(
2008
).
27.
A.
Chandra
and
B.
Bagchi
,
J. Chem. Phys.
110
,
10024
(
1999
).
28.
A.
Chandra
and
B.
Bagchi
,
J. Phys. Chem. B
104
,
9067
(
2000
).
29.
A.
Chandra
and
B.
Bagchi
,
J. Chem. Phys.
113
,
3226
(
2000
).
30.
C.
Contreras-Aburto
and
G.
Nägele
,
J. Phys.: Condens. Matter
24
,
464108
(
2012
).
31.
G.
Nägele
and
J. K. G.
Dhont
,
J. Chem. Phys.
108
,
9566
(
1998
).
32.
G.
Nägele
and
J.
Bergenholtz
,
J. Chem. Phys.
108
,
9893
(
1998
).
33.
G.
Nägele
,
J.
Bergenholtz
, and
J. K. G.
Dhont
,
J. Chem. Phys.
110
,
7037
(
1999
).
34.
J. G.
Kirkwood
,
R. L.
Baldwin
,
P. J.
Dunlop
,
L. J.
Gosting
, and
G.
Kegeles
,
J. Chem. Phys.
33
,
1505
(
1960
).
35.
A. R.
Altenberger
,
J. S.
Dahler
, and
M.
Tirrel
,
J. Chem. Phys.
86
,
2909
(
1987
).
36.
P.
Szymczak
and
B.
Cichocki
,
J. Stat. Mech.: Theory Exp.
(
2008
)
P01025
.
37.
G. K.
Batchelor
,
J. Fluid Mech.
119
,
379
(
1982
).
38.
G. K.
Batchelor
,
J. Fluid Mech.
131
,
155
(
1983
).
39.
W. T.
Gilleland
,
S.
Torquato
, and
W. B.
Russel
,
J. Fluid Mech.
667
,
403
(
2011
).
40.
P.
Szymczak
and
B.
Chichocki
,
Europhys. Lett.
59
,
465
(
2002
).
41.
P.
Atkins
and
J.
de Paula
,
Physical Chemistry
, 7th ed. (
Oxford University Press
,
2002
).
42.
M.
Spiro
, in
Physical Methods of Chemistry
, 2nd ed.,
Electrochemical Methods
Vol.
II
, edited by
B. W.
Rossiter
and
J. F.
Hamilton
(
Wiley-Interscience
,
New York
,
1986
).
43.
G.
Nägele
,
The Physics of Colloidal Soft Matter
(
Institute of Fundamental Technological Research
,
Warsaw, Poland
,
2004
).
44.
J.
Horbach
,
S.
Das
,
A.
Griesche
,
M.-P.
Macht
,
G.
Frohberg
, and
A.
Meyer
,
Phys. Rev. B
75
,
174304
(
2007
).
45.
G.-H.
Gao
,
H.-B.
Shi
, and
Y.-X.
Yu
,
Fluid Phase Equilib.
256
,
105
(
2007
).
46.
B.
Felderhof
and
R.
Jones
,
Physica A
119
,
591
(
1983
).
47.
H. J.
Kim
and
H. L.
Friedman
,
J. Chem. Phys.
89
,
3222
(
1988
).
48.
G. C.
Abade
,
B.
Cichocki
,
M. L.
Ekiel-Jezewska
,
G.
Nägele
, and
E.
Wajnryb
,
J. Chem. Phys.
132
,
014503
(
2010
).
49.
A.
Ladd
,
H.
Gang
,
J.
Zhu
, and
D.
Weitz
,
Phys. Rev. E
52
,
6550
(
1995
).
50.
R. B.
Jones
and
G. S.
Burfield
,
Physica A
111
,
562
(
1982
).
51.
G.
Nägele
,
Phys. Rep.
272
,
215
(
1996
).
52.
D.
Forster
,
Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions
(
W.A. Benjamin
,
New York
,
1975
).
53.
P.
Szymczak
and
B.
Chichocki
,
J. Chem. Phys.
121
,
3329
(
2004
).
54.
G.
Nägele
, “
Colloidal hydrodynamics
,” in
Physics of Complex Colloids—Proceedings of the International School Enrico Fermi
, edited by
C.
Bechinger
,
F.
Sciortino
, and
P.
Ziherl
(
IOS
,
Amsterdam
,
2013
).
55.
M. A.
Wilson
,
A.
Pohorille
, and
L. R.
Pratt
,
J. Chem. Phys.
83
,
5832
(
1985
).
56.
J. M.
Caillol
,
D.
Levesque
, and
J. J.
Weis
,
J. Chem. Phys.
85
,
6645
(
1986
).
57.
J. A.
Padro
,
J.
Trullàs
, and
G.
Sesé
,
Mol. Phys.
72
,
1035
(
1991
).
58.
D. R.
Foss
and
J. F.
Brady
,
J. Fluid Mech.
407
,
167
(
2000
).
59.
D. R.
Foss
and
J. F.
Brady
,
J. Rheol.
44
,
629
(
2000
).
60.
B.
Morgan
and
P. A.
Madden
,
J. Chem. Phys.
120
,
1402
(
2004
).
61.
B. L.
Bhargava
and
S.
Balasubramanian
,
J. Chem. Phys.
123
,
144505
(
2005
).
62.
G. H.
Golub
and
C. F.
Van Loan
,
Matrix Computations
, 3rd ed. (
Johns Hopkins University Press
,
Baltimore
,
1996
).
63.
B.
Cichocki
and
W.
Hess
,
Physica A
141
,
475
(
1987
).
64.
K.
Kawasaki
,
Physica A
215
,
61
(
1995
).
65.
S. J.
Pitts
and
H. C.
Andersen
,
J. Chem. Phys.
113
,
3945
(
2000
).
66.
J. L.
Barrat
and
A.
Latz
,
J Phys.: Condens. Matter
2
,
4289
(
1990
).
67.
T.
Voigtmann
,
Phys. Rev. E
68
,
051401
(
2003
).
68.
E.
Flenner
and
G.
Szamel
,
Phys. Rev. E
72
,
031508
(
2005
).
69.
W.
Götze
,
Complex Dynamics of Glass-forming Liquids: A Mode-Coupling Theory
(
Oxford University Press
,
USA
,
2009
).
70.
L.
Blum
and
J. S.
Høye
,
J. Phys. Chem.
81
,
1311
(
1977
).
71.
K.
Hiroike
,
Mol. Phys.
33
,
1195
(
1977
).
72.
J.
Rotne
and
S.
Prager
,
J. Chem. Phys.
50
,
4831
(
1969
).
73.
J.
Luke
,
SIAM J. Appl. Math.
53
,
1613
(
1993
).
74.
J.
Luke
,
Phys. Fluids A
4
,
212
(
1992
).
75.
H. W.
Cheng
and
S. S. T.
Yau
,
Linear Algebra Appl.
262
,
131
(
1997
).
76.
G.
Nägele
and
P.
Baur
,
Physica A
245
,
297
(
1997
).
77.
P.
Turq
,
L.
Orcil
,
M.
Chemla
, and
R.
Mills
,
J. Phys. Chem.
86
,
4062
(
1982
).
78.
L.
Onsager
,
Trans. Faraday Soc.
23
,
341
(
1927
).
79.
E. L.
Cussler
,
Diffusion: Mass Transfer in Fluid Systems
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
1997
).
80.
C. S.
Babu
and
T.
Ichiye
,
J. Chem. Phys.
100
,
9147
(
1994
).
81.
J.
Ulander
and
R.
Kjellander
,
J. Chem. Phys.
114
,
4893
(
2001
).
82.
B.
Forsberg
,
J.
Ulander
, and
R.
Kjellander
,
J. Chem. Phys.
122
,
064502
(
2005
).
83.
C.
Avendaño
and
A.
Gil-Villegas
,
Mol. Phys.
104
,
1475
(
2006
).
84.
C.
Contreras Aburto
and
G.
Nägele
,
J. Chem. Phys.
139
,
134110
(
2013
).
You do not currently have access to this content.