Based on the results of a previous paper [M. Noppel, H. Vehkamäki, P. M. Winkler, M. Kulmala, and P. E. Wagner, J. Chem. Phys.139, 134107 (2013)], we derive a thermodynamically consistent expression for reversible or minimal work needed to form a dielectric liquid nucleus of a new phase on a charged insoluble conducting sphere within a uniform macroscopic one- or multicomponent mother phase. The currently available model for ion-induced nucleation assumes complete spherical symmetry of the system, implying that the seed ion is immediately surrounded by the condensing liquid from all sides. We take a step further and treat more realistic geometries, where a cap-shaped liquid cluster forms on the surface of the seed particle. We derive the equilibrium conditions for such a cluster. The equalities of chemical potentials of each species between the nucleus and the vapor represent the conditions of chemical equilibrium. The generalized Young equation that relates contact angle with surface tensions, surface excess polarizations, and line tension, also containing the electrical contribution from triple line excess polarization, expresses the condition of thermodynamic equilibrium at three-phase contact line. The generalized Laplace equation gives the condition of mechanical equilibrium at vapor-liquid dividing surface: it relates generalized pressures in neighboring bulk phases at an interface with surface tension, excess surface polarization, and dielectric displacements in neighboring phases with two principal radii of surface curvature and curvatures of equipotential surfaces in neighboring phases at that point. We also re-express the generalized Laplace equation as a partial differential equation, which, along with electrostatic Laplace equations for bulk phases, determines the shape of a nucleus. We derive expressions that are suitable for calculations of the size and composition of a critical nucleus (generalized version of the classical Kelvin-Thomson equation).

1.
M.
Noppel
,
H.
Vehkamäki
,
P. M.
Winkler
,
M.
Kulmala
, and
P. E.
Wagner
,
J. Chem. Phys.
139
,
134107
(
2013
).
2.
K.
Nishioka
and
I.
Kusaka
,
J. Chem. Phys.
96
,
5370
(
1992
).
3.
P. G.
Debenedetti
and
H.
Reiss
,
J. Chem. Phys.
108
,
5498
(
1998
).
4.
A. I.
Rusanov
,
Surf. Sci. Rep.
58
,
111
(
2005
).
5.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Pergamon
,
Oxford
,
1987
).
6.
J.
Gaydos
,
Y.
Rotenberg
,
L.
Boruvka
,
P.
Chen
, and
A. W.
Neumann
, “
The generalized theory of capillarity
,” in
Applied Surface Thermodynamics
,
Surface Science Series
Vol.
63
, edited by
A. W.
Neumann
and
J. K.
Spelt
(
CRC Press
,
1996
).
7.
V. B.
Warshavsky
and
A. K.
Shchekin
,
Colloids Surf., A
148
,
283
(
1999
).
8.
H.
Vehkamäki
,
Classical Nucleation Theory in Multicomponent Systems
(
Springer
,
Berlin
,
2006
), Sec. 3.1.
9.
Reference 8, Sec. 2.6.
10.
E. G.
Bakhoum
,
J. Electrostatics
66
,
561
(
2008
).
11.
C. T.
O’Konski
and
H. C.
Thacher
,
J. Phys. Chem.
57
,
955
(
1953
);
G. I.
Taylor
,
Proc. R. Soc. London, Ser. A
280
,
383
(
1964
);
C. G.
Garton
and
Z.
Krasucki
,
Proc. R. Soc. London, Ser. A
280
(
1381
),
211
(
1964
);
J.
Latham
and
I. W.
Roxburgh
,
Proc. R. Soc. London, Ser. A
295
,
84
(
1966
);
P. R.
Brazier-Smith
and
J.
Latham
,
Nature (London)
220
,
689
(
1968
);
P. R.
Brazier-Smith
and
J.
Latham
,
Proc. R. Soc. London, Ser. A
312
,
277
(
1969
);
M. A.
Abbas
and
J.
Latham
,
Q. J. R. Meteorol. Soc.
95
,
63
(
1969
);
A. K.
Azad
and
J.
Latham
,
J. Atmos. Terr. Phys.
32
,
345
(
1970
);
C. E.
Rosenkilde
,
Proc. R. Soc. London, Ser. A
312
,
473
(
1969
);
P. R.
Brazier-Smith
,
Phys. Fluids
14
,
1
(
1971
);
S.
Torza
,
R. G.
Cox
, and
S. G.
Mason
,
Philos. Trans. R. Soc. London, Ser. A
269
,
295
(
1971
);
B. C.
Srivastava
and
T. P.
Pandya
,
J. Colloid Interface Sci.
83
,
35
(
1981
);
M. J.
Miksis
,
Phys. Fluids
24
,
1967
(
1981
);
P. M.
Adornato
and
R. A.
Brown
,
Proc. R. Soc. London, Ser. A
389
,
101
(
1983
);
D.
Zrnić
,
R.
Doviak
, and
P.
Mahapatra
,
Radio Sci.
19
,
75
, doi: (
1984
);
N.
Dodgson
and
C.
Sozou
,
ZAMP
38
,
424
(
1987
);
J. D.
Sherwood
,
J. Fluid Mech.
188
,
133
(
1988
);
K. V.
Beard
,
J. Q.
Feng
, and
C.
Chuang
,
J. Atmos. Sci.
46
,
2404
(
1989
);
C. C.
Chuang
and
K. V.
Beard
,
J. Atmos. Sci.
47
,
1374
(
1990
);
H.
Li
,
T. C.
Halsey
, and
A.
Lobkovsky
,
Europhys. Lett.
27
,
575
(
1994
);
O. A.
Basaran
and
L. E.
Scriven
,
Phys. Fluids A
1
,
795
(
1989
);
O. A.
Basaran
and
L. E.
Scriven
,
Phys. Fluids A
1
,
799
(
1989
);
O. A.
Basaran
and
L. E.
Scriven
,
J. Colloid Interface Sci.
140
,
10
(
1990
);
F. K.
Wohlhuter
and
O. A.
Basaran
,
J. Fluid Mech.
235
,
481
(
1992
);
O. A.
Basaran
and
F. K.
Wohlhuter
,
J. Fluid Mech.
244
,
1
(
1992
);
F. K.
Wohlhuter
and
O. A.
Basaran
,
J. Magn. Magn. Mater.
122
,
259
(
1993
);
M. T.
Harris
and
O. A.
Basaran
,
J. Colloid Interface Sci.
170
,
308
(
1995
);
A. I.
Grigor'ev
,
Tech. Phys.
47
,
834
(
2002
);
E. K.
Zholkovskij
,
J. H.
Masliyah
, and
J.
Czarnecki
,
J. Fluid Mech.
472
,
1
(
2002
);
A.
Bateni
,
S. S.
Susnar
,
A.
Amirfazli
, and
A. W.
Neumann
,
Langmuir
20
,
7589
(
2004
);
[PubMed]
A.
Bateni
,
A.
Ababneh
,
J. A. W.
Elliott
,
A. W.
Neumann
, and
A.
Amirfazli
,
Adv. Space Res.
36
,
64
(
2005
);
D.
Langemann
,
Math. Comput. Simul.
63
,
529
(
2003
);
D.
Langemann
and
M.
Krüger
,
Math. Comput. Simul.
66
,
539
(
2004
);
N.
Dubash
and
A. J.
Mestel
,
J. Fluid Mech.
581
,
469
(
2007
);
N.
Dubash
and
A. J.
Mestel
,
Phys. Fluids
19
,
072101
(
2007
);
J.
Hua
,
L. K.
Lim
, and
C.-H.
Wang
,
Phys. Fluids
20
,
113302
(
2008
).
12.
K.
Shchekin
,
M. S.
Kshevetskii
, and
V. B.
Varshavskii
,
Colloid J.
64
,
488
(
2002
).
13.
L. D.
Landau
and
E. M.
Lifshitz
,
Electrodynamics of Continuum Media
(
Pergamon
,
Oxford
,
1984
), Sec. 15.
14.
M.
Liu
and
K.
Stierstadt
, e-print arXiv:cond-mat/0010261v1 [cond-mat.soft] (
2000
).
15.
Reference 13, Sec. 10.
16.
Reference 13, Eq. (15.7).
17.
A. I.
Rusanov
and
F. M.
Kuni
,
J. Colloid Interface Sci.
100
,
264
(
1984
).
18.
Reference 13, Eq. (15.9).
19.
Reference 13, Eq. (10.19).
You do not currently have access to this content.