In this work, the extension of the previously developed domain based local pair-natural orbital (DLPNO) based singles- and doubles coupled cluster (DLPNO-CCSD) method to perturbatively include connected triple excitations is reported. The development is based on the concept of triples-natural orbitals that span the joint space of the three pair natural orbital (PNO) spaces of the three electron pairs that are involved in the calculation of a given triple-excitation contribution. The truncation error is very smooth and can be significantly reduced through extrapolation to the zero threshold. However, the extrapolation procedure does not improve relative energies. The overall computational effort of the method is asymptotically linear with the system size O(N). Actual linear scaling has been confirmed in test calculations on alkane chains. The accuracy of the DLPNO-CCSD(T) approximation relative to semicanonical CCSD(T0) is comparable to the previously developed DLPNO-CCSD method relative to canonical CCSD. Relative energies are predicted with an average error of approximately 0.5 kcal/mol for a challenging test set of medium sized organic molecules. The triples correction typically adds 30%–50% to the overall computation time. Thus, very large systems can be treated on the basis of the current implementation. In addition to the linear C150H302 (452 atoms, >8800 basis functions) we demonstrate the first CCSD(T) level calculation on an entire protein, Crambin with 644 atoms, and more than 6400 basis functions.

1.
R. J.
Bartlett
and
M.
Musial
,
Rev. Mod. Phys.
79
,
291
(
2007
).
2.
J. A.
Pople
,
M.
Head-Gordon
, and
K.
Raghavachari
,
Int. J. Quantum Chem.
34
,
377
(
1988
).
3.
T. J.
Lee
and
P. R.
Taylor
,
Int. J. Quantum Chem.
36
,
199
(
1989
).
4.
J. F.
Stanton
,
Chem. Phys. Lett.
281
,
130
(
1997
).
5.
H.
Müller
, and
W.
Kutzelnigg
,
Mol. Phys.
92
,
535
(
1997
).
6.
T.
Janowski
,
A. R.
Ford
, and
P.
Pulay
,
J. Chem. Theory Comput.
3
,
1368
(
2007
).
7.
W.
Klopper
,
J.
Noga
,
E. E.
Koch
, and
T.
Helgaker
,
Theor. Chem. Acc.
97
,
164
(
1997
).
8.
M.
Pitonak
,
F.
Holka
,
P.
Neogrady
, and
M.
Urban
,
J. Mol. Struct. Theochem.
768
,
79
(
2006
).
9.
P.
Constans
,
P. Y.
Ayala
, and
G. E.
Scuseria
,
J. Chem. Phys.
113
,
10451
(
2000
).
10.
M.
Häser
and
J.
Almlöf
,
J. Chem. Phys.
96
,
489
(
1992
).
11.
S.
Saebo
and
P.
Pulay
,
Ann. Rev. Phys. Chem.
44
,
213
(
1993
).
12.
J. W.
Boughton
and
P.
Pulay
,
J. Comput. Chem.
14
,
736
(
1993
).
13.
S.
Saebo
and
P.
Pulay
,
J. Chem. Phys.
88
,
1884
(
1988
).
14.
S.
Saebo
and
P.
Pulay
,
J. Chem. Phys.
86
,
914
(
1987
).
15.
S.
Saebo
and
P.
Pulay
,
Chem. Phys. Lett.
113
,
13
(
1985
).
16.
P.
Pulay
,
Chem. Phys. Lett.
100
,
151
(
1983
).
17.
M.
Schütz
and
H. J.
Werner
,
J. Chem. Phys.
114
,
661
(
2001
).
18.
M.
Schütz
and
H. J.
Werner
,
Chem. Phys. Lett.
318
,
370
(
2000
).
19.
M.
Schütz
,
G.
Hetzer
, and
H. J.
Werner
,
J. Chem. Phys.
111
,
5691
(
1999
).
20.
C.
Hampel
and
H. J.
Werner
,
J. Chem. Phys.
104
,
6286
(
1996
).
21.
J.
Yang
,
G. K. L.
Chan
,
F. R.
Manby
,
M.
Schütz
, and
H. J.
Werner
,
J. Chem. Phys.
136
,
144105
(
2012
).
22.
M.
Schütz
,
J.
Yang
,
G. C.-L.
Chan
,
F. R.
Manby
, and
H.-J.
Werner
,
J. Chem. Phys.
138
,
054109
(
2013
).
23.
Z.
Rolik
and
M.
Kallay
,
J. Chem. Phys.
135
,
104111
(
2011
).
24.
P. M.
Kozlowski
,
M.
Kumar
,
P.
Piecuch
,
W.
Li
,
N. P.
Bauman
,
J. A.
Hansen
,
P.
Lodowski
, and
M.
Jaworska
,
J. Chem. Theory Comput.
8
,
1870
(
2012
).
25.
W.
Li
and
P.
Piecuch
,
J. Phys. Chem. A
114
,
6721
(
2010
).
26.
W.
Li
and
P.
Piecuch
,
J. Phys. Chem. A
114
,
8644
(
2010
).
27.
W.
Li
,
P.
Piecuch
,
J. R.
Gour
, and
S. H.
Li
,
J. Chem. Phys.
131
,
114109
(
2009
).
28.
J.
Friedrich
,
J. Chem. Theory Comput.
9
,
408
(
2013
).
29.
C.
Riplinger
and
F.
Neese
,
J. Chem. Phys.
138
,
034106
(
2013
).
30.
D. G.
Liakos
and
F.
Neese
,
J. Phys. Chem. A
116
,
4801
(
2012
).
31.
L. M. J.
Huntington
,
A.
Hansen
,
F.
Neese
, and
M.
Nooijen
,
J. Chem. Phys.
136
,
064101
(
2012
).
32.
D. G.
Liakos
,
A.
Hansen
, and
F.
Neese
,
J. Chem. Theory Comput.
7
,
76
(
2011
).
33.
A.
Hansen
,
D. G.
Liakos
, and
F.
Neese
,
J. Chem. Phys.
135
,
214102
(
2011
).
34.
A.
Anoop
,
W.
Thiel
, and
F.
Neese
,
J. Chem. Theory Comput.
6
,
3137
(
2010
).
35.
F.
Neese
,
F.
Wennmohs
, and
A.
Hansen
,
J. Chem. Phys.
130
,
114108
(
2009
).
36.
F.
Neese
,
A.
Hansen
, and
D. G.
Liakos
,
J. Chem. Phys.
131
,
064103
(
2009
).
37.
C.
Edmiston
and
M.
Krauss
,
J. Chem. Phys.
42
,
1119
(
1965
).
38.
C.
Edmiston
,
J. Chem. Phys.
45
,
1833
(
1966
).
39.
R.
Ahlrichs
and
W.
Kutzelnigg
,
J. Chem. Phys.
48
,
1819
(
1968
).
40.
W.
Meyer
, in
Methods of Electronic Structure Theory
, edited by
H. F.
Schaefer
III
(
Plenum Press
,
New York
,
1977
), p.
413
.
41.
W.
Meyer
,
J. Chem. Phys.
64
,
2901
(
1976
).
42.
W.
Meyer
,
Theor. Chim. Acta
35
,
277
(
1974
).
43.
W.
Meyer
,
W.
Jakubetz
, and
P.
Schuster
,
Chem. Phys. Lett.
21
,
97
(
1973
).
44.
W.
Meyer
,
J. Chem. Phys.
58
,
1017
(
1973
).
45.
W.
Meyer
,
Int. J. Quantum Chem.
S5
,
341
(
1971
).
46.
O.
Vahtras
,
J.
Almlöf
, and
M. W.
Feyereisen
,
Chem. Phys. Lett.
213
,
514
(
1993
).
47.
B.
Helmich
and
C.
Hättig
,
J. Chem. Phys.
135
,
214106
(
2011
).
48.
D. P.
Tew
,
B.
Helmich
, and
C.
Hättig
,
J. Chem. Phys.
135
,
074107
(
2011
).
49.
C.
Hättig
,
D. P.
Tew
, and
B.
Helmich
,
J. Chem. Phys.
136
,
204105
(
2012
).
50.
C.
Krause
and
H. J.
Werner
,
Phys. Chem. Chem. Phys.
14
,
7591
(
2012
).
51.
A. P.
Rendell
,
T. J.
Lee
, and
A.
Komornicki
,
Chem. Phys. Lett.
178
,
462
(
1991
).
52.
T. J.
Lee
,
A. P.
Rendell
, and
P. R.
Taylor
,
J. Phys. Chem.
94
,
5463
(
1990
).
53.
F.
Neese
,
WIREs Comput. Mol. Sci.
2
,
73
(
2012
).
54.
H. J.
Werner
and
M.
Schütz
,
J. Chem. Phys.
135
,
144116
(
2011
).
55.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
56.
N. J.
Russ
and
T. D.
Crawford
,
J. Chem. Phys.
121
,
691
(
2004
).
57.
R. A.
Mata
and
H. J.
Werner
,
J. Chem. Phys.
125
,
184110
(
2006
).
58.
F.
Furche
and
J. P.
Perdew
,
J. Chem. Phys.
124
,
044103
(
2006
).
59.
R.
Izsak
and
F.
Neese
,
J. Chem. Phys.
135
,
144105
(
2011
).
60.
F.
Neese
,
F.
Wennmohs
,
A.
Hansen
, and
U.
Becker
,
Chem. Phys.
356
,
98
(
2009
).
61.
See supplementary material at http://dx.doi.org/10.1063/1.4821834 for the structures used in the benchmark calculations.

Supplementary Material

You do not currently have access to this content.