Adsorption of ZnxOy (x + y = 1–6) clusters on ZnO (000 ± 1) polar surfaces is studied systematically via density function theory (DFT) calculations. Different adsorption behaviors are predicted for these two surfaces. On the (0001)-Zn surface, O atoms adsorb on hollow sites at the initial stage. Then Zn atoms come in, and the stable structure becomes bulk-like for some specific clusters. On the (0001¯)-O surface, Zn cluster adsorption leads to stable cage structures formed by pulling substrate O out. In clusters with both Zn and O, O atoms avoid directly bonding with the surface, and no energetically favorable bulk-like structure is found. On the basis of the prediction of these surface adsorption behaviors, experimentally observed growth rate and surface roughness differences on these two polar surfaces can be understood.

1.
M. H.
Huang
,
S.
Mao
,
H.
Feick
,
H.
Yan
,
Y.
Wu
,
H.
Kind
,
E.
Weber
,
R.
Russo
, and
P.
Yang
,
Science
292
(
5523
),
1897
(
2001
).
2.
C.
Soci
,
A.
Zhang
,
B.
Xiang
,
S. A.
Dayeh
,
D.
Aplin
,
J.
Park
,
X.
Bao
,
Y.-H.
Lo
, and
D.
Wang
,
Nano Lett.
7
(
4
),
1003
(
2007
).
3.
M.
Willander
,
O.
Nur
,
Q.
Zhao
,
L.
Yang
,
M.
Lorenz
,
B.
Cao
,
J. Z.
Pérez
,
C.
Czekalla
,
G.
Zimmermann
, and
M.
Grundmann
,
Nanotechnology
20
(
33
),
332001
(
2009
).
4.
X.
Han
,
L.
Kou
,
X.
Lang
,
J.
Xia
,
N.
Wang
,
R.
Qin
,
J.
Lu
,
J.
Xu
,
Z.
Liao
, and
X.
Zhang
,
Adv. Mater.
21
(
48
),
4937
(
2009
).
5.
H.
Xue
,
N.
Pan
,
M.
Li
,
Y.
Wu
,
X.
Wang
, and
J.
Hou
,
Nanotechnology
21
(
21
),
215701
(
2010
).
6.
X.
Wang
,
J.
Song
,
J.
Liu
, and
Z. L.
Wang
,
Science
316
(
5821
),
102
(
2007
).
7.
J.
Zhou
,
Y.
Gu
,
P.
Fei
,
W.
Mai
,
Y.
Gao
,
R.
Yang
,
G.
Bao
, and
Z. L.
Wang
,
Nano Lett.
8
(
9
),
3035
(
2008
).
8.
J. H.
He
,
C. L.
Hsin
,
J.
Liu
,
L. J.
Chen
, and
Z. L.
Wang
,
Adv. Mater.
19
(
6
),
781
(
2007
).
9.
Z. L.
Wang
,
J. Phys. Condens. Matter
16
(
25
),
R829
(
2004
).
10.
Z. R.
Tian
,
J. A.
Voigt
,
J.
Liu
,
B.
Mckenzie
,
M. J.
Mcdermott
,
M. A.
Rodriguez
,
H.
Konishi
, and
H.
Xu
,
Nature Mater.
2
(
12
),
821
(
2003
).
11.
P.
Yang
,
H.
Yan
,
S.
Mao
,
R.
Russo
,
J.
Johnson
,
R.
Saykally
,
N.
Morris
,
J.
Pham
,
R.
He
, and
H.-J.
Choi
,
Adv. Funct. Mater.
12
(
5
),
323
(
2002
).
12.
A.
Tsukazaki
,
A.
Ohtomo
,
T.
Kita
,
Y.
Ohno
,
H.
Ohno
, and
M.
Kawasaki
,
Science
315
(
5817
),
1388
(
2007
).
13.
A.
Tsukazaki
,
S.
Akasaka
,
K.
Nakahara
,
Y.
Ohno
,
H.
Ohno
,
D.
Maryenko
,
A.
Ohtomo
, and
M.
Kawasaki
,
Nature Mater.
9
(
11
),
889
(
2010
).
14.
D.
Maryenko
,
J.
Falson
,
Y.
Kozuka
,
A.
Tsukazaki
,
M.
Onoda
,
H.
Aoki
, and
M.
Kawasaki
,
Phys. Rev. Lett.
108
(
18
),
186803
(
2012
).
15.
D.
Oh
,
T.
Kato
,
H.
Goto
,
S.
Park
,
T.
Hanada
,
T.
Yao
, and
J.
Kim
,
Appl. Phys. Lett.
93
(
24
),
241907
(
2008
).
16.
U. K.
Gautam
,
M.
Imura
,
C. S.
Rout
,
Y.
Bando
,
X.
Fang
,
B.
Dierre
,
L.
Sakharov
,
A.
Govindaraj
,
T.
Sekiguchi
, and
D.
Golberg
,
Proc. Natl. Acad. Sci. U.S.A.
107
(
31
),
13588
(
2010
).
17.
Z. L.
Wang
,
X.
Kong
, and
J.
Zuo
,
Phys. Rev. Lett.
91
(
18
),
185502
(
2003
).
18.
G.
Kresse
,
O.
Dulub
, and
U.
Diebold
,
Phys. Rev. B
68
(
24
),
245409
(
2003
).
19.
S.
Ito
,
T.
Shimazaki
,
M.
Kubo
,
H.
Koinuma
, and
M.
Sumiya
,
J. Chem. Phys.
135
(
24
),
241103
(
2011
).
20.
M.
Valtiner
,
M.
Todorova
,
G.
Grundmeier
, and
J.
Neugebauer
,
Phys. Rev. Lett.
103
(
6
),
065502
(
2009
).
21.
Y.-M.
Yu
and
B.-G.
Liu
,
Phys. Rev. B
77
(
19
),
195327
(
2008
).
22.
B.
Jiang
,
C.
Zhang
,
C.
Jin
,
H.
Wang
,
X.
Chen
,
H.
Zhan
,
F.
Huang
, and
J.
Kang
,
Cryst. Growth Des.
12
(
6
),
2850
(
2012
).
23.
N.
Pan
,
X.
Wang
,
K.
Zhang
,
H.
Hu
,
B.
Xu
,
F.
Li
, and
J.
Hou
,
Nanotechnology
16
(
8
),
1069
(
2005
).
24.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
(
1
),
15
(
1996
).
25.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
(
16
),
11169
(
1996
).
26.
J. P.
Perdew
,
J.
Chevary
,
S.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
(
11
),
6671
(
1992
).
27.
J. P.
Perdew
,
J.
Chevary
,
S.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
48
(
7
),
4978
(
1993
).
28.
M.
Methfessel
and
A.
Paxton
,
Phys. Rev. B
40
(
6
),
3616
(
1989
).
29.
F.
Decremps
,
F.
Datchi
,
A.
Saitta
,
A.
Polian
,
S.
Pascarelli
,
A.
Di Cicco
,
J.
Itié
, and
F.
Baudelet
,
Phys. Rev. B
68
(
10
),
104101
(
2003
).
30.
B.
Meyer
and
D.
Marx
,
Phys. Rev. B
67
(
3
),
035403
(
2003
).
31.
See supplementary material at http://dx.doi.org/10.1063/1.4821749 for more computational details, energetic data, and geometry structures.
32.
N.
Lu
,
D.
Yin
,
Z. Y.
Li
, and
J. L.
Yang
,
J. Phys. Chem. C
115
(
24
),
11991
(
2011
).
33.
P.-L.
Liu
and
Y.-J.
Siao
,
Scr. Mater.
64
(
6
),
483
(
2011
).
34.
M.
Kubo
,
Y.
Oumi
,
H.
Takaba
,
A.
Chatterjee
,
A.
Miyamoto
,
M.
Kawasaki
,
M.
Yoshimoto
, and
H.
Koinuma
,
Phys. Rev. B
61
(
23
),
16187
(
2000
).
35.
O.
Dulub
,
L. A.
Boatner
, and
U.
Diebold
,
Surf. Sci.
519
(
3
),
201
(
2002
).
36.
R.
Zhu
,
Q.
Zhao
,
J.
Xu
,
L.
Chen
,
Y.
Leprince-Wang
, and
D.
Yu
,
Cryst. Eng. Comm.
15
(
21
),
4203
(
2013
).
37.
G.
Perillat-Merceroz
,
R.
Thierry
,
P.
Jouneau
,
P.
Ferret
, and
G.
Feuillet
,
Nanotechnology
23
(
12
),
125702
(
2012
).

Supplementary Material

You do not currently have access to this content.