In all-atom molecular simulation studies of proteins, each atom in the protein is represented by a point mass and interactions are defined in terms of the atomic positions. In recent years, various simplified approaches have been proposed. These approaches aim to improve computational efficiency and to provide a better physical insight. The simplified models can differ widely in their description of the geometry and the interactions inside the protein. This study explores the most fundamental choice in the simplified protein models: the choice of a coordinate set defining the protein structure. A simplified model can use fewer point masses than the all-atom model and/or eliminate some of the internal coordinates of the molecule by setting them to an average or ideal value. We look at the implications of such choices for the overall protein structure. We find that care must be taken for angular coordinates, where even very small variations can lead to significant changes in the positions of far away atoms. In particular, we show that the ϕ/ψ torsion angles are not a sufficient coordinate set, whereas another coordinate set with two degrees of freedom per residue, virtual Cα backbone bond, and torsion angles performs satisfactorily.

1.
H. M.
Berman
,
J.
Westbrook
,
Z.
Feng
,
G.
Gilliland
,
T. N.
Bhat
,
H.
Weissig
,
I. N.
Shindyalov
, and
P. E.
Bourne
,
Nucleic Acids Res.
28
,
235
242
(
2000
).
2.
A. V.
Finkelstein
and
O.
Ptitsyn
,
Protein Physics: A Course of Lectures
(
Academic Press
,
London
,
2002
).
3.
H.
Frauenfelder
,
The Physics of Proteins: An Introduction to Biological Physics and Molecular Biophysics
(
Springer Verlag
,
New York
,
2010
).
4.
G. A.
Petsko
and
D.
Ringe
,
Protein Structure and Function
(
New Science Press
,
London
,
2004
).
5.
G.
Ramachandran
,
C.
Ramakrishnan
, and
V.
Sasisekharan
,
J. Mol. Biol.
7
,
95
99
(
1963
).
6.
C.
Ramakrishnan
and
G.
Ramachandran
,
Biophys. J.
5
,
909
933
(
1965
).
7.
Biomolecular Forms and Functions: A Celebration of 50 Years of the Ramachandran Map
, edited by
M.
Bansal
and
N.
Srinivasan
(
World Scientific
,
Singapore
,
2013
).
8.
I. W.
Davis
,
A.
Leaver-Fay
,
V. B.
Chen
,
J. N.
Block
,
G. J.
Kapral
,
X.
Wang
,
L. W.
Murray
,
W. B.
Arendall
,
J.
Snoeyink
,
J. S.
Richardson
, and
D. C.
Richardson
,
Nucleic Acids Res.
35
,
W375
W378
(
2007
).
9.
R. A.
Laskowski
,
J. A.
Rullmannn
,
M. W.
MacArthur
,
R.
Kaptein
, and
J. M.
Thornton
,
J. Biomol. NMR
8
,
477
486
(
1996
).
10.
S.
Takada
,
Curr. Opin. Struct. Biol.
22
,
130
137
(
2012
).
11.
V.
Tozzini
,
Curr. Opin. Struct. Biol.
15
,
144
150
(
2005
).
12.
A. J.
Rader
,
Curr. Opin. Pharmacol.
10
,
753
759
(
2010
).
13.
C.
Clementi
,
Curr. Opin. Struct. Biol.
18
,
10
15
(
2008
).
14.
C.
Wu
and
J. E.
Shea
,
Curr. Opin. Struct. Biol.
21
,
209
220
(
2011
).
15.
I.
Bahar
and
A. J.
Rader
,
Curr. Opin. Struct. Biol.
15
,
586
592
(
2005
).
16.
W. G.
Noid
,
J.-W.
Chu
,
G. S.
Ayton
,
V.
Krishna
,
S.
Izvekov
,
G. A.
Voth
,
A.
Das
, and
H. C.
Andersen
,
J. Chem. Phys.
128
,
244114
(
2008
).
17.
R. D.
Hills
, Jr.
,
L.
Lu
, and
G. A.
Voth
,
PLOS Comput. Biol.
6
,
e1000827
(
2010
).
18.
A.
Liwo
,
S.
Ołdziej
,
M. R.
Pincus
,
R. J.
Wawak
,
S.
Rackovsky
, and
H. A.
Scheraga
,
J. Comput. Chem.
18
,
849
873
(
1997
).
19.
A.
Liwo
,
C.
Czaplewski
,
J.
Pillardy
, and
H. A.
Scheraga
,
J. Chem. Phys.
115
,
2323
2347
(
2001
).
20.
A.
Liwo
,
C.
Czaplewski
,
S.
Ołdziej
,
A. V.
Rojas
,
R.
Kaźmierkiewicz
,
M.
Makowski
,
R. K.
Murarka
, and
H. A.
Scheraga
, in
Coarse-Graining of Condensed Phase and Biomolecular Systems
, edited by
G.
Voth
(
CRC Press
,
2008
).
21.
J. W.
Ponder
and
D. W.
Case
,
Adv. Protein Chem.
66
,
27
85
(
2003
).
22.
U. H.
Danielsson
,
M.
Lundgren
, and
A. J.
Niemi
,
Phys. Rev. E
82
,
021910
(
2010
).
23.
M.
Chernodub
,
S.
Hu
, and
A. J.
Niemi
,
Phys. Rev. E
82
,
011916
(
2010
).
24.
N.
Molkenthin
,
S.
Hu
, and
A. J.
Niemi
,
Phys. Rev. Lett.
106
,
078102
(
2011
).
25.
A.
Krokhotin
,
A. J.
Niemi
, and
X.
Peng
,
Phys. Rev. E
85
,
031906
031913
(
2012
).
26.
P.
Derreumaux
and
N.
Mousseau
,
J. Chem. Phys.
126
,
025101
(
2007
).
27.
Y.
Mu
and
Y. Q.
Gao
,
J. Chem. Phys.
127
,
105102
(
2007
).
28.
T.
Bereau
and
M.
Deserno
,
J. Chem. Phys.
130
,
235106
(
2009
).
29.
D.
Alemani
,
F.
Collu
,
M.
Cascella
, and
M. D.
Peraro
,
J. Chem. Theory Comput.
6
,
315
(
2010
).
30.
V.
Tozzini
,
W.
Rocchia
, and
J. A.
McCammon
,
J. Chem. Theory Comput.
2
,
667
673
(
2006
).
31.
M. Z.
Tien
,
D. K.
Sydykova
,
A. G.
Meyer
, and
C. O.
Wilke
,
PeerJ
1
,
e80
(
2013
).
32.
S.
Hu
,
M.
Lundgren
, and
A. J.
Niemi
,
Phys. Rev. E
83
,
061908
(
2011
).
33.
G. R.
Kneller
and
P. A.
Calligari
,
Acta Crystallogr.
D62
,
302
311
(
2006
).
34.
P. A.
Calligari
and
G. R.
Kneller
,
Acta Crystallogr.
D68
,
1690
1693
(
2012
).
35.
S. L.
Altmann
,
Rotations, Quaternions, and Double Groups
(
Clarendon Press
,
Oxford
,
1986
).
36.
G. R.
Kneller
,
Mol. Simul.
7
,
113
119
(
1991
).
37.
M. L.
Huggins
,
J. Chem. Phys.
9
,
440
(
1941
).
38.
P. J.
Flory
,
J. Chem. Phys.
9
,
660
(
1941
).
39.
P. G.
De Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
Ithaca
,
1979
).
40.
L.
Schäfer
,
Excluded Volume Effects in Polymer Solutions, as Explained by the Renormalization Group
(
Springer Verlag
,
Berlin
,
1999
).
41.
B.
Widom
,
J. Chem. Phys.
43
,
3892
(
1965
).
42.
L. P.
Kadanoff
,
Physics
2
,
263
(
1966
).
43.
K. G.
Wilson
,
Phys. Rev. B
4
,
3174
(
1971
).
44.
M. E.
Fisher
,
Rev. Mod. Phys.
46
,
597
(
1974
).
45.
B.
Li
,
N.
Madras
, and
A.
Sokal
,
J. Stat. Phys.
80
,
661
(
1995
).
46.
T. G.
Dewey
,
Journ. Chem. Phys.
98
,
2250
(
1993
).
47.
R.
Diamond
,
Acta Crystallogr.
A27
,
436
452
(
1971
).
48.
A. K.
Mazur
and
R. A.
Abagyan
,
J. Biomol. Struct. Dyn.
6
,
815
832
(
1989
).
49.
L. M.
Rice
and
A. T.
Brünger
,
Proteins
19
,
277
290
(
1994
).
50.
G. R.
Kneller
and
K.
Hinsen
,
Phys. Rev. E
50
,
1559
1564
(
1994
).
51.
P.
Güntert
,
C.
Mumenthaler
, and
K.
Wüthrich
,
J. Mol. Biol.
273
,
283
298
(
1997
).
52.
K.
Hinsen
and
G. R.
Kneller
,
Phys. Rev. E
52
,
6868
6874
(
1995
).
53.
K.
Hinsen
,
Procedia Computer Science
4
,
579
588
(
2011
).
54.
K.
Hinsen
, ActivePapers Python edition, see https://bitbucket.org/khinsen/active_papers_py for software required for running the programs provided in the supplementary material.55 
55.
See supplementary material at http://dx.doi.org/10.1063/1.4821598 for the software used for the computations and the input and output datasets.
56.
The HDF Group
, HDFView, see http://www.hdfgroup.org/hdf-java-html/hdfview/ for software permitting to inspect datasets in the supplementary material.55 

Supplementary Material

You do not currently have access to this content.