We investigate the mechanical behavior of microtubule (MT) protofilaments under the action of bending forces, ramped up linearly in time, to provide insight into the severing of MTs by microtubule associated proteins (MAPs). We used the self-organized polymer model which employs a coarse-grained description of the protein chain and ran Brownian dynamics simulations accelerated on graphics processing units that allow us to follow the dynamics of a MT system on experimental timescales. Our study focused on the role played in the MT depolymerization dynamics by the inter-tubulin contacts a protofilament experiences when embedded in the MT lattice, and the number of binding sites of MAPs on MTs. We found that proteins inducing breaking of MTs must have at least three attachment points on any tubulin dimer from an isolated protofilament. In contrast, two points of contact would suffice when dimers are located in an intact MT lattice, in accord with experimental findings on MT severing proteins. Our results show that confinement of a protofilament in the MT lattice leads to a drastic reduction in the energy required for the removal of tubulin dimers, due to the drastic reduction in entropy. We further showed that there are differences in the energetic requirements based on the location of the dimer to be removed by severing. Comparing the energy of tubulin dimers removal revealed by our simulations with the amount of energy resulting from one ATP hydrolysis, which is the source of energy for all MAPs, we provided strong evidence for the experimental finding that severing proteins do not bind uniformly along the MT wall.

1.
E.
Nogales
,
K. H.
Downing
,
L. A.
Amos
, and
J.
Lowe
, “
Tubulin and FtsZ form a distinct family of GTPases
,”
Nat. Struct. Biol.
5
,
451
458
(
1998
).
2.
E.
Nogales
,
M.
Whittaker
,
R. A.
Milligan
, and
K. H.
Downing
, “
High-resolution model of the microtubule
,”
Cell
96
,
79
88
(
1999
).
3.
E.
Nogales
and
H. W.
Wang
, “
Structural intermediates in microtubule assembly and disassembly: How and why?
,”
Curr. Opin. Cell Biol.
18
,
179
184
(
2006
).
4.
M. K.
Gardner
,
A. J.
Hunt
,
H. V.
Goodson
, and
D. J.
Odde
, “
Microtubule assembly dynamics: New insights at the nanoscale
,”
Curr. Opin. Cell Biol.
20
,
64
70
(
2008
).
5.
C. P.
Johnson
,
H. Y.
Tang
,
C.
Carag
,
D. W.
Speicher
, and
D. E.
Discher
, “
Forced unfolding of proteins within cells
,”
Science
317
,
663
666
(
2007
).
6.
R.
Paul
,
P.
Heil
,
J. P.
Spatz
, and
U. S.
Schwarz
, “
Propagation of mechanical stress through the actin cytoskeleton toward focal adhesions: Model and experiment
,”
Biophys. J.
94
,
1470
1482
(
2008
).
7.
R. A.
Walker
,
E. T.
O’Brien
,
N. K.
Pryer
,
M. F.
Soboerio
,
W. A.
Voter
,
H. P.
Erickson
, and
E. D.
Salmon
, “
Dynamic instability of individual microtubules analyzed by video light microscopy: Rate constants and transition frequencies
,”
J. Cell Biol.
107
,
1437
1448
(
1988
).
8.
J.
Howard
,
Mechanics of Motor Proteins and the Cytoskeleton
(
Sinauer Associates, Inc.
,
Massachusetts
,
2001
).
9.
J.
Howard
and
A. A.
Hyman
, “
Dynamics and mechanics of the microtubule plus end
,”
Nature (London)
422
,
753
758
(
2003
).
10.
C. E.
Walczak
, “
Microtubule dynamics and tubulin interacting proteins
,”
Curr. Opin. Cell Biol.
12
,
52
56
(
2000
).
11.
A.
Roll-Mecak
and
F. J.
McNally
, “
Microtubule-severing enzymes
,”
Curr. Opin. Cell Biol.
22
,
96
103
(
2010
).
12.
J.
Helenius
,
G.
Brouhard
,
Y.
Kalaidzidis
,
S.
Diez
, and
J.
Howard
, “
The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends
,”
Nature (London)
441
,
115
119
(
2006
).
13.
X.
Su
,
R.
Ohi
, and
D.
Pellman
, “
Move in for the kill: Motile microtubule regulators
,”
Trends Cell Biol.
22
,
567
575
(
2012
).
14.
J. J.
Hartman
,
J.
Mahr
,
K.
McNally
,
K.
Okawa
,
A.
Iwamatsu
,
S.
Thomas
,
S.
Cheesman
,
J.
Heuser
,
R. D.
Vale
, and
F. J.
McNally
, “
Katanin, a microtubule-severing protein, is a novel AAA ATPase that targets to the centrosome using a WD40-containing subunit
,”
Cell
93
,
277
287
(
1998
).
15.
K. J.
Evans
,
E. R.
Gomes
,
S. M.
Reisenweber
,
G. G.
Gundersen
, and
B. P.
Lauring
, “
Linking axonal degeneration to microtubule remodeling by spastin-mediated microtubule severing
,”
J. Cell Biol.
168
,
599
606
(
2005
).
16.
D.
Zhang
,
K. D.
Grode
,
S. F.
Stewman
,
J. D.
Diaz-Valencia
,
E.
Liebling
,
U.
Rath
,
T.
Riera
,
J. D.
Currie
,
D. W.
Buster
,
A. B.
Asenjo
,
H. J.
Sosa
,
J. L.
Ross
,
A.
Ma
,
S. L.
Rogers
, and
D. J.
Sharp
, “
Drosophila katanin is a microtubule depolymerase that regulates cortical-microtubule plus-end interactions and cell migration
,”
Nat. Cell Biol.
13
,
361
369
(
2011
).
17.
A.
Roll-Mecak
and
R. D.
Vale
, “
Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin
,”
Nature (London)
451
,
363
368
(
2008
).
18.
J. J.
Hartman
and
R. D.
Vale
, “
Microtubule disassembly by ATP-dependent oligomerization of the AAA enzyme katanin
,”
Science
286
,
782
785
(
1999
).
19.
D.
Yang
,
N.
Rismanchi
,
B.
Renvoise
,
J.
Lippincott-Schwartz
,
C.
Blackstone
, and
J. H.
Hurley
, “
Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B
,”
Nat. Struct. Mol. Biol.
15
,
1278
1286
(
2008
).
20.
S. R.
White
,
K. J.
Evans
,
J.
Lary
,
J. L.
Cole
, and
B.
Lauring
, “
Recognition of C-terminal amino acids in tubulin by pore loops in spastin is important for microtubule severing
,”
J. Cell Biol.
176
,
995
1005
(
2007
).
21.
J. D.
Diaz-Valencia
,
M. M.
Morelli
,
M.
Bailey
,
D.
Zhang
,
D. J.
Sharp
, and
J. L.
Ross
, “
Drosophila Katanin-60 depolymerizes and severs at microtubule defects
,”
Biophys. J.
100
,
2440
2449
(
2011
).
22.
L. J.
Davis
,
D. J.
Odde
,
S. M.
Block
, and
S. P.
Gross
, “
The importance of lattice defects in katanin-mediated microtubule severing in vitro
,”
Biophys. J.
82
,
2916
2927
(
2002
).
23.
T.
Eckert
,
D. Tuong-Van
Le
,
S.
Link
,
L.
Friedmann
, and
G.
Woehlke
, “
Spastin's microtubule-binding properties and comparison to katanin
,”
PLoS ONE
7
,
e50161
(
2012
).
24.
O.
Keskin
,
S. R.
Durell
,
I.
Bahar
,
R. L.
Jernigan
, and
D. G.
Covell
, “
Relating molecular flexibility to function: A case study of tubulin
,”
Biophys. J.
83
,
663
680
(
2002
).
25.
Y.
Gebremichael
,
J.-W.
Chu
, and
G. A.
Voth
, “
Intrinsic bending and structural rearrangement of tubulin dimer: Molecular dynamics simulations and coarse-grained analysis
,”
Biophys. J.
95
,
2487
2499
(
2008
).
26.
A.
Grafmuller
and
G. A.
Voth
, “
Intrinsic bending of microtubule protofilaments
,”
Structure
19
,
409
417
(
2011
).
27.
R. I.
Dima
and
H.
Joshi
, “
Probing the origin of tubulin rigidity with molecular simulations
,”
Proc. Natl. Acad. Sci. U.S.A.
105
,
15743
15748
(
2008
).
28.
H.
Joshi
,
F.
Momin
,
K. E.
Haines
, and
R. I.
Dima
, “
Exploring the contribution of collective motions to the dynamics of forced-unfolding in tubulin
,”
Biophys. J.
98
,
657
666
(
2010
).
29.
K. E.
Theisen
,
A.
Zhmurov
,
M. E.
Newberry
,
V.
Barsegov
, and
R. I.
Dima
, “
Multiscale modeling of the nanomechanics of microtubule protofilaments
,”
J. Phys. Chem. B
116
,
8545
8555
(
2012
).
30.
C.
Hyeon
,
R. I.
Dima
, and
D.
Thirumalai
, “
Pathways and kinetic barriers in mechanical unfolding and refolding of RNA and proteins
,”
Structure
14
,
1633
1645
(
2006
).
31.
A.
Zhmurov
,
R. I.
Dima
,
Y.
Kholodov
, and
V.
Barsegov
, “
SOP-GPU: Accelerating biomolecular simulations in the centisecond timescale using graphics processors
,”
Proteins
78
,
2984
2999
(
2010
).
32.
C.
Hyeon
and
J. N.
Onuchic
, “
Internal strain regulates the nucleotide binding site of the kinesin leading head
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
2175
2180
(
2007
).
33.
R.
Tehver
and
D.
Thirumalai
, “
Rigor to post-rigor transition in myosin V: Link between the dynamics and the supporting architecture
,”
Structure
18
,
471
481
(
2010
).
34.
M.
Mickler
,
R. I.
Dima
,
H.
Dietz
,
C.
Hyeon
,
D.
Thirumalai
, and
M.
Rief
, “
Revealing the bifurcation in the unfolding pathways of GFP using single molecule experiments and simulations
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
20268
20273
(
2007
).
35.
J. Y.
Lee
,
T. M.
Iverson
, and
R. I.
Dima
, “
Molecular investigations into the mechanics of actin in different nucleotide states
,”
J. Phys. Chem. B
115
,
186
195
(
2011
).
36.
A.
Zhmurov
,
A. E.
Brown
,
R. I.
Litvinov
,
R. I.
Dima
,
J. W.
Weisel
, and
V.
Barsegov
, “
Mechanism of fibrin(ogen) forced unfolding
,”
Structure
19
,
1615
1624
(
2011
).
37.
Z.
Liu
,
G.
Reddy
,
E. P.
O’Brien
, and
D.
Thirumalai
, “
Collapse kinetics and chevron plots from simulations of denaturant-dependent folding of globular proteins
,”
Proc. Natl. Acad. Sci. U.S.A.
108
,
7787
7792
(
2011
).
38.
D. B.
Wells
and
A.
Aksimentiev
, “
Mechanical properties of a complete microtubule revealed through molecular dynamics simulation
,”
Biophys. J.
99
,
629
637
(
2010
).
39.
R.
Chen
,
L.
Li
, and
Z.
Weng
, “
ZDOCK: An initial-stage protein-docking algorithm
,”
Proteins
52
,
80
87
(
2003
).
40.
J.
Mittal
and
R. B.
Best
, “
Thermodynamics and kinetics of protein folding under confinement
,”
Proc. Natl. Acad. Sci. U.S.A.
105
,
20233
20238
(
2008
).
41.
V.
VanBuren
,
D. J.
Odde
, and
L.
Cassimeris
, “
Estimates of lateral and longitudinal bond energies within the microtubule lattice
,”
Proc. Natl. Acad. Sci. U.S.A.
99
,
6035
6040
(
2002
).
42.
M. S.
Cheung
,
D. K.
Klimov
, and
D.
Thirumalai
, “
Molecular crowding enhances native state stability and refolding rates of globular proteins
,”
Proc. Natl. Acad. Sci. U.S.A.
102
,
4753
4758
(
2005
).
43.
T.
Ogawa
,
R.
Nitta
,
Y.
Okada
, and
N.
Hirokawa
, “
A common mechanism for microtubule destabilizers—M type kinesins stabilize curling of the protofilament using the class-specific neck and loops
,”
Cell
116
,
591
602
(
2004
).
44.
V.
Varga
,
C.
Leduc
,
V.
Bormuth
,
S.
Diez
, and
J.
Howard
, “
Kinesin-8 motors act cooperatively to mediate length-dependent microtubule depolymerization
,”
Cell
138
,
1174
1183
(
2009
).
45.
G.
Reddy
,
Z.
Liu
, and
D.
Thirumalai
, “
Denaturant-dependent folding of GFP
,”
Proc. Natl. Acad. Sci. U.S.A.
109
,
17832
17838
(
2012
).
46.
P. J.
de Pablo
,
I. A. T.
Schaap
,
F. C.
MacKintosh
, and
C. F.
Schmidt
, “
Deformation and collapse of microtubules on the nanometer scale
,”
Phys. Rev. Lett.
91
,
098101
(
2003
).
47.
I. A. T.
Schaap
,
C.
Carrasco
,
P. J.
de Pablo
,
F. C.
MacKintosh
, and
C. F.
Schmidt
, “
Elastic response, buckling and instability of microtubules under radial indentation
,”
Biophys. J.
91
,
1521
1531
(
2006
).
48.
A.
Kravats
,
M.
Jayasinghe
, and
G.
Stan
, “
Unfolding and translocation pathway of substrate protein controlled by structure in repetitive allosteric cycles of the ClpY ATPase
,”
Proc. Natl. Acad. Sci. U.S.A.
108
,
2234
2239
(
2011
).
49.
S.
Kumar
, and
M. S.
Li
, “
Biomolecules under mechanical force
,”
Phys. Rep.
486
,
1
74
(
2010
).
50.
L.
Conway
,
D.
Wood
,
E.
Tuzel
, and
J. L.
Ross
, “
Motor transport of sel-assembled cargos in crowded environments
,”
Proc. Natl. Acad. Sci. U.S.A.
109
,
20814
(
2012
).
51.
D.
Sept
,
N. A.
Baker
, and
J. A.
McCammon
, “
The physical basis of microtubule structure and stability
,”
Protein Sci.
12
,
2257
2261
(
2003
).
52.
See supplementary material at http://dx.doi.org/10.1063/1.4819817 for additional details of simulations, tables summarizing the simulation protocols, the number of simulation runs, and the time evolution of the contacts at the various domain interfaces in the various PF systems, diagrams describing the simulation setups for PF and 3 PFs bending and for the calculation of bending angles, figures showing the most typical force extension curves and snapshots of transient conformations not pictured here.

Supplementary Material

You do not currently have access to this content.