Experimental studies of the diffusion of biomolecules within biological cells are routinely confronted with multiple sources of stochasticity, whose identification renders the detailed data analysis of single molecule trajectories quite intricate. Here, we consider subdiffusive continuous time random walks that represent a seminal model for the anomalous diffusion of tracer particles in complex environments. This motion is characterized by multiple trapping events with infinite mean sojourn time. In real physical situations, however, instead of the full immobilization predicted by the continuous time random walk model, the motion of the tracer particle shows additional jiggling, for instance, due to thermal agitation of the environment. We here present and analyze in detail an extension of the continuous time random walk model. Superimposing the multiple trapping behavior with additive Gaussian noise of variable strength, we demonstrate that the resulting process exhibits a rich variety of apparent dynamic regimes. In particular, such noisy continuous time random walks may appear ergodic, while the bare continuous time random walk exhibits weak ergodicity breaking. Detailed knowledge of this behavior will be useful for the truthful physical analysis of experimentally observed subdiffusion.

1.
I. Y.
Wong
,
M. L.
Gardel
,
D. R.
Reichman
,
E. R.
Weeks
,
M. T.
Valentine
,
A. R.
Bausch
, and
D. A.
Weitz
,
Phys. Rev. Lett.
92
,
178101
(
2004
).
2.
A. V.
Weigel
,
B.
Simon
,
M. M.
Tamkun
, and
D.
Krapf
,
Proc. Natl. Acad. Sci. U.S.A.
108
,
6438
(
2011
).
3.
S. M. A.
Tabei
,
S.
Burov
,
H. Y.
Kim
,
A.
Kuznetsov
,
T.
Huynh
,
J.
Jureller
,
L. H.
Philipson
,
A. R.
Dinner
, and
N. F.
Scherer
,
Proc. Natl. Acad. Sci. U.S.A.
110
,
4911
(
2013
).
4.
J.-H.
Jeon
,
V.
Tejedor
,
S.
Burov
,
E.
Barkai
,
C.
Selhuber-Unkel
,
K.
Berg-Sørensen
,
L.
Oddershede
, and
R.
Metzler
,
Phys. Rev. Lett.
106
,
048103
(
2011
).
5.
E.
Barkai
,
Y.
Garini
, and
R.
Metzler
,
Phys. Today
65
(
8
),
29
(
2012
).
6.
S.
Havlin
and
D.
Ben-Avraham
,
Adv. Phys.
36
,
695
(
1987
).
7.
J.-P.
Bouchaud
and
A.
Georges
,
Phys. Rep.
195
,
127
(
1990
).
8.
R.
Metzler
and
J.
Klafter
,
Phys. Rep.
339
,
1
(
2000
).
9.
R.
Metzler
and
J.
Klafter
,
J. Phys. A
37
,
R161
(
2004
).
10.
I.
Golding
and
E. C.
Cox
,
Phys. Rev. Lett.
96
,
098102
(
2006
).
11.
F.
Höfling
and
T.
Franosch
,
Rep. Prog. Phys.
76
,
046602
(
2013
).
12.
M. J.
Saxton
and
K.
Jacobson
,
Annu. Rev. Biophys. Biomol. Struct.
26
,
373
(
1997
).
13.
H.
Scher
and
E. W.
Montroll
,
Phys. Rev. B
12
,
2455
(
1975
).
14.
E. W.
Montroll
and
G. H.
Weiss
,
J. Math. Phys.
6
,
167
(
1965
).
15.
N.
Leijnse
,
J.-H.
Jeon
,
S.
Loft
,
R.
Metzler
, and
L. B.
Oddershede
,
Eur. Phys. J. Spec. Top.
204
,
75
(
2012
).
16.
H.
Scher
,
G.
Margolin
,
R.
Metzler
,
J.
Klafter
, and
B.
Berkowitz
,
Geophys. Res. Lett.
29
,
1061
, doi: (
2002
).
17.
B.
Berkowitz
,
A.
Cortis
,
M.
Dentz
, and
H.
Scher
,
Rev. Geophys.
44
,
RG2003
, doi: (
2006
).
18.
C.
Monthus
and
J.-P.
Bouchaud
,
J. Phys. A
29
,
3847
(
1996
).
19.
S.
Burov
and
E.
Barkai
,
Phys. Rev. Lett.
98
,
250601
(
2007
).
20.
R.
Metzler
,
E.
Barkai
, and
J.
Klafter
,
Phys. Rev. Lett.
82
,
3563
(
1999
);
R.
Metzler
,
E.
Barkai
, and
J.
Klafter
,
Europhys. Lett.
46
,
431
(
1999
).
21.
I.
Nordlund
,
Z. Phys. Chem.
87
,
40
(
1914
).
22.
C.
Bräuchle
,
D. C.
Lamb
, and
J.
Michaelis
,
Single Particle Tracking and Single Molecule Energy Transfer
(
Wiley-VCH
,
Weinheim, Germany
,
2012
);
X. S.
Xie
,
P. J.
Choi
,
G.-W.
Li
,
N. K.
Lee
, and
G.
Lia
,
Annu. Rev. Biophys.
37
,
417
(
2008
).
[PubMed]
23.
I.
Bronstein
,
Y.
Israel
,
E.
Kepten
,
S.
Mai
,
Y.
Shav-Tal
,
E.
Barkai
, and
Y.
Garini
,
Phys. Rev. Lett.
103
,
018102
(
2009
).
24.
J.
Szymanski
and
M.
Weiss
,
Phys. Rev. Lett.
103
,
038102
(
2009
).
25.
J.-H.
Jeon
,
N.
Leijnse
,
L. B.
Oddershede
, and
R.
Metzler
,
New J. Phys.
15
,
045011
(
2013
).
26.
A.
Caspi
,
R.
Granek
, and
M.
Elbaum
,
Phys. Rev. Lett.
85
,
5655
(
2000
).
27.
D.
Banks
and
C.
Fradin
,
Biophys. J.
89
,
2960
(
2005
).
28.
E.
Kepten
,
I.
Bronshtein
, and
Y.
Garini
,
Phys. Rev. E
87
,
052713
(
2013
).
29.
S. C.
Weber
,
A. J.
Spakowitz
, and
J. A.
Theriot
,
Phys. Rev. Lett.
104
,
238102
(
2010
).
30.
S.
Burov
,
J.-H.
Jeon
,
R.
Metzler
, and
E.
Barkai
,
Phys. Chem. Chem. Phys.
13
,
1800
(
2011
).
31.
Y.
Meroz
,
I.
Eliazar
, and
J.
Klafter
,
J. Phys. A
42
,
434012
(
2009
);
Y.
Meroz
,
I. M.
Sokolov
, and
J.
Klafter
,
Phys. Rev. Lett.
110
,
090601
(
2013
).
[PubMed]
32.
W.
Deng
and
E.
Barkai
,
Phys. Rev. E
79
,
011112
(
2009
).
33.
J.-H.
Jeon
and
R.
Metzler
,
Phys. Rev. E
81
,
021103
(
2010
).
Note, however, the occurrence of transient non-ergodic relaxation to equilibrium under confinement, as shown in
J.-H.
Jeon
and
R.
Metzler
,
Phys. Rev. E
85
,
021147
(
2012
).
34.
I.
Goychuk
,
Adv. Chem. Phys.
150
,
187
(
2012
).
35.
A.
Fuliński
,
Phys. Rev. E
83
,
061140
(
2011
).
36.
G. R.
Kneller
,
K.
Baczynski
, and
M.
Pasenkiewicz-Gierula
,
J. Chem. Phys.
135
,
141105
(
2011
).
37.
J.-H.
Jeon
,
H. M.-S.
Monne
,
M.
Javanainen
, and
R.
Metzler
,
Phys. Rev. Lett.
109
,
188103
(
2012
).
38.
G.
Zumofen
and
J.
Klafter
,
Physica D
69
,
436
(
1993
).
39.
A.
Godec
and
R.
Metzler
,
Phys. Rev. Lett.
110
,
020603
(
2013
).
40.
D.
Froemberg
and
E.
Barkai
,
Phys. Rev. E
87
,
031104
(R) (
2013
).
41.
J.-P.
Bouchaud
,
J. Phys. (Paris)
2
,
1705
(
1992
).
42.
G.
Bel
, and
E.
Barkai
,
Phys. Rev. Lett.
94
,
240602
(
2005
);
A.
Rebenshtok
and
E.
Barkai
,
Phys. Rev. Lett.
99
,
210601
(
2007
).
[PubMed]
43.
M. A.
Lomholt
,
I. M.
Zaid
, and
R.
Metzler
,
Phys. Rev. Lett.
98
,
200603
(
2007
).
44.
Y.
He
,
S.
Burov
,
R.
Metzler
, and
E.
Barkai
,
Phys. Rev. Lett.
101
,
058101
(
2008
).
45.
A.
Lubelski
,
I. M.
Sokolov
, and
J.
Klafter
,
Phys. Rev. Lett.
100
,
250602
(
2008
).
46.
J. H. P.
Schulz
,
E.
Barkai
, and
R.
Metzler
,
Phys. Rev. Lett.
110
,
020602
(
2013
);
[PubMed]
E.
Barkai
,
Phys. Rev. Lett.
90
,
104101
(
2003
).
[PubMed]
47.
S.
Burov
,
R.
Metzler
, and
E.
Barkai
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
13228
(
2010
).
48.
T.
Neusius
,
I. M.
Sokolov
, and
J. C.
Smith
,
Phys. Rev. E
80
,
011109
(
2009
).
49.
I. M.
Sokolov
,
E.
Heinsalu
,
P.
Hänggi
, and
I.
Goychuk
,
Europhys. Lett.
86
,
30009
(
2009
).
50.
T.
Miyaguchi
and
T.
Akimoto
,
Phys. Rev. E
87
,
032130
(
2013
).
52.
A.
Caspi
,
R.
Granek
, and
M.
Elbaum
,
Phys. Rev. E
66
,
011916
(
2002
).
53.
54.
S.
Condamin
,
V.
Tejedor
,
R.
Voituriez
,
O.
Bénichou
, and
J.
Klafter
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
5675
(
2008
).
55.
V.
Tejedor
,
O.
Bénichou
,
R.
Voituriez
,
R.
Jungmann
,
F.
Simmel
,
C.
Selhuber-Unkel
,
L.
Oddershede
, and
R.
Metzler
,
Biophys. J.
98
,
1364
(
2010
).
56.
M.
Bauer
,
R.
Valiullin
,
G.
Radons
, and
J.
Kaerger
,
J. Chem. Phys.
135
,
144118
(
2011
).
57.
M.
Magdziarz
,
A.
Weron
,
K.
Burnecki
, and
J.
Klafter
,
Phys. Rev. Lett.
103
,
180602
(
2009
);
[PubMed]
M.
Magdziarz
and
J.
Klafter
,
Phys. Rev. E
82
,
011129
(
2010
).
58.
K.
Burnecki
,
E.
Kepten
,
J.
Janczura
,
I.
Bronshtein
,
Y.
Garini
, and
A.
Weron
,
Biophys. J.
103
,
1839
(
2012
).
59.
J.-H.
Jeon
and
R.
Metzler
,
J. Phys. A: Math. Theor.
43
,
252001
(
2010
).
60.
E.
Barkai
,
R.
Metzler
, and
J.
Klafter
,
Phys. Rev. E
61
,
132
(
2000
). Note the occurrence of the factor Γ(1 − α) here due to the different choice of ψ(t) in Eq. (15).
61.
62.
J.
Galvan-Miyoshi
,
J.
Delgado
, and
R.
Castillo
,
Eur. Phys. J. E
26
,
369
(
2008
).
63.
M.
Bellour
,
M.
Skouri
,
J.-P.
Munch
, and
P.
Hébraud
,
Eur. Phys. J. E
8
,
431
(
2002
).
64.
S.
Eule
and
R.
Friedrich
,
Phys. Rev. E
87
,
032162
(
2013
).
You do not currently have access to this content.