The ratio of the 0-0 to 0-1 peak intensities in the photoluminescence (PL) spectrum of red-phase poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene], better known as MEH-PPV, is significantly enhanced relative to the disordered blue-phase and is practically temperature independent in the range from T = 5 K to 180 K. The PL lifetime is similarly temperature independent. The measured trends are accounted for by modeling red-phase MEH-PPV as disordered π-stacks of elongated chains. Using the HJ-aggregate Hamiltonian expanded to include site disorder amongst electrons and holes, the absorption and PL spectra of cofacial MEH-PPV dimers are calculated. The PL 0-0/0-1 line strength ratio directly responds to the competition between intrachain interactions which promote J-aggregate-like behavior (enhanced PL ratio) and interchain interactions which promote H-aggregate-like behavior (attenuated PL ratio). In MEH-PPV aggregates, J-like behavior is favored by a relatively large intrachain exciton bandwidth – roughly an order of magnitude greater than the interchain bandwidth – and the presence of disorder. The latter is essential for allowing 0-0 emission at low temperatures, which is otherwise symmetry forbidden. For Gaussian disorder distributions consistent with the measured (inhomogeneous) line widths of the vibronic peaks in the absorption spectrum, calculations show that the 0-0 peak maintains its dominance over the 0-1 peak, with the PL ratio and radiative lifetime practically independent of temperature, in excellent agreement with experiment. Interestingly, interchain interactions lead only to about a 30% drop in the PL ratio, suggesting that the MEH-PPV π-stacks – and strongly disordered HJ-aggregates in general – can masquerade as single (elongated) chains. Our results may have important applications to other emissive conjugated polymers such as the β-phase of polyfluorenes.

1.
A. J.
Heeger
,
Chem. Soc. Rev.
39
(
7
),
2354
2371
(
2010
).
2.
S.
Gunes
,
H.
Neugebauer
, and
N. S.
Sariciftci
,
Chem. Rev.
107
(
4
),
1324
1338
(
2007
).
3.
R. H.
Friend
,
R. W.
Gymer
,
A. B.
Holmes
,
J. H.
Burroughes
,
R. N.
Marks
,
C.
Taliani
,
D. D. C.
Bradley
,
D. A. D.
Santos
,
J. L.
Bredas
,
M.
Logdlund
, and
W. R.
Salaneck
,
Nature (London)
397
,
121
128
(
1999
).
4.
F. C.
Spano
,
J. Chem. Phys.
122
,
234701
(
2005
).
5.
J.
Clark
,
C.
Silva
,
R. H.
Friend
, and
F. C.
Spano
,
Phys. Rev. Lett.
98
(
20
),
206406
(
2007
).
6.
J.
Clark
,
J. F.
Chang
,
F. C.
Spano
,
R. H.
Friend
, and
C.
Silva
,
Appl. Phys. Lett.
94
(
16
),
163306
(
2009
).
7.
F. C.
Spano
,
J.
Clark
,
C.
Silva
, and
R. H.
Friend
,
J. Chem. Phys.
130
(
7
),
074904
(
2009
).
8.
H.
Yamagata
and
F. C.
Spano
,
J. Chem. Phys.
135
,
054906
(
2011
).
9.
M.
Kasha
,
H. R.
Rawls
, and
M. A.
El-Bayoumi
,
Molecular Spectroscopy
(
Butterworths
,
London
,
1965
), pp.
371
392
.
10.
R. M.
Hochstrasser
and
M.
Kasha
,
Photochem. Photobiol.
3
,
317
331
(
1964
).
11.
M.
Kasha
,
Radiat. Res.
20
(
1
),
55
70
(
1963
).
12.
E. G.
McRae
and
M.
Kasha
,
J. Chem. Phys.
28
,
721
722
(
1958
).
13.
B.
Khachatryan
,
T. D.
Nguyen
,
Z. V.
Vardeny
, and
E.
Ehrenfreund
,
Phys. Rev. B
86
(
19
),
195203
(
2012
).
14.
F.
Dubin
,
R.
Melet
,
T.
Barisien
,
R.
Grousson
,
L.
Legrand
,
M.
Schott
, and
V.
Voliotist
,
Nat. Phys.
2
(
1
),
32
35
(
2006
).
15.
M.
Schott
, in
Photophysics of Molecular Materials: From Single Molecules to Single Crystals
, edited by
G.
Lanzani
(
Wiley-VCH
,
Weinheim
,
2006
), pp.
49
145
.
16.
R.
Lecuiller
,
J.
Berrehar
,
J. D.
Ganiere
,
C.
Lapersonne-Meyer
,
P.
Lavallard
, and
M.
Schott
,
Phys. Rev. B
66
(
12
),
125205
(
2002
).
17.
F. C.
Spano
and
H.
Yamagata
,
J. Phys. Chem. B
115
(
18
),
5133
5143
(
2011
).
18.
F. C.
Spano
,
Acc. Chem. Res.
43
(
3
),
429
439
(
2010
).
19.
J.
Cornil
,
D.
Beljonne
,
C. M.
Heller
,
I. H.
Campbell
,
B. K.
Laurich
,
D. L.
Smith
,
D. D. C.
Bradley
,
K.
Mullen
, and
J. L.
Bredas
,
Chem. Phys. Lett.
278
,
139
145
(
1997
).
20.
Z.
Shuai
,
J. L.
Bredas
, and
W. P.
Su
,
Chem. Phys. Lett.
228
(
4–5
),
301
306
(
1994
).
21.
R.
Chang
,
J. H.
Hsu
,
W. S.
Fann
,
K. K.
Liang
,
C. H.
Chiang
,
M.
Hayashi
,
J.
Yu
,
S. H.
Lin
,
E. C.
Chang
,
K. R.
Chuang
, and
S. A.
Chen
,
Chem. Phys. Lett.
317
(
1–2
),
142
152
(
2000
).
22.
H.
Yamagata
and
F. C.
Spano
,
J. Chem. Phys.
136
(
18
),
184901
(
2012
);
[PubMed]
H.
Yamagata
and
F. C.
Spano
,
J. Chem. Phys.
137
,
249901
(
2012
).
23.
E. T.
Niles
,
J. D.
Roehling
,
H.
Yamagata
,
A. J.
Wise
,
F. C.
Spano
,
A. J.
Moule
, and
J. K.
Grey
,
J. Phys. Chem. Lett.
3
(
2
),
259
263
(
2012
).
24.
T. W.
Hagler
,
K.
Pakbaz
, and
A. J.
Heeger
,
Phys. Rev. B
51
(
20
),
14199
(
1995
).
25.
B. J.
Schwartz
,
Annu. Rev. Phys. Chem.
54
,
141
172
(
2003
).
26.
C. J.
Collison
,
L. J.
Rothberg
,
V.
Treemaneekarn
, and
Y.
Li
,
Macromolecules
34
,
2346
2352
(
2001
).
27.
A.
Kohler
,
S. T.
Hoffmann
, and
H.
Bassler
,
J. Am. Chem. Soc.
134
(
28
),
11594
11601
(
2012
).
28.
H. Z.
Lin
,
R. P.
Hania
,
R.
Bloem
,
O.
Mirzov
,
D.
Thomsson
, and
I. G.
Scheblykin
,
Phys. Chem. Chem. Phys.
12
(
37
),
11770
11777
(
2010
).
29.
O.
Mirzov
and
I. G.
Scheblykin
,
Phys. Chem. Chem. Phys.
8
,
5569
5576
(
2006
).
30.
P. F.
Barbara
,
A. J.
Gesquiere
,
S.-J.
Park
, and
Y. J.
Lee
,
Acc. Chem. Res.
38
(
7
),
602
610
(
2005
).
31.
Z. H.
Yu
and
P. F.
Barbara
,
J. Phys. Chem. B
108
(
31
),
11321
11326
(
2004
).
32.
J. K.
Grey
,
D. Y.
Kim
,
B. C.
Norris
,
W. L.
Miller
, and
P. F.
Barbara
,
J. Phys. Chem. B
110
(
51
),
25568
25572
(
2006
).
33.
F. A.
Feist
and
T.
Basche
,
J. Phys. Chem. B
112
(
32
),
9700
9708
(
2008
).
34.
F. A.
Feist
,
M. F.
Zickler
, and
T.
Basche
,
ChemPhysChem
12
(
8
),
1499
1508
(
2011
).
35.
Y.
Ebihara
,
S.
Habuchi
, and
M.
Vacha
,
Chem. Lett.
38
(
11
),
1094
1095
(
2009
).
36.
Y.
Ebihara
and
M.
Vacha
,
J. Phys. Chem. B
112
(
40
),
12575
12578
(
2008
).
37.
D. H.
Hu
,
J.
Yu
,
K.
Wong
,
B.
Bagchi
,
P. J.
Rossky
, and
P. F.
Barbara
,
Nature (London)
405
(
6790
),
1030
1033
(
2000
).
38.
P. K. H.
Ho
,
J.-S.
Kim
,
N.
Tessler
, and
R. H.
Friend
,
J. Chem. Phys.
115
,
2709
2720
(
2001
).
39.
S. J.
Strickler
and
R. A.
Berg
,
J. Chem. Phys.
37
(
4
),
814
(
1962
).
40.
L. A.
Peteanu
,
G. A.
Sherwood
,
J. H.
Werner
,
A. P.
Shreve
,
T. M.
Smith
, and
J.
Wildeman
,
J. Phys. Chem. C
115
(
31
),
15607
15616
(
2011
).
41.
M. W.
Wu
and
E. M.
Conwell
,
Phys. Rev. B
56
(
16
),
R10060
R10062
(
1997
).
42.
H.
Bassler
,
Phys. Status Solidi B
107
,
9
(
1981
).
43.
A.
Stradomska
,
W.
Kulig
,
M.
Slawik
, and
P.
Petelenz
,
J. Chem. Phys.
134
(
22
),
224505
(
2011
).
44.
J. W.
van der Horst
,
P. A.
Bobbert
,
M. A. J.
Michels
, and
H.
Bassler
,
J. Chem. Phys.
114
(
15
),
6950
6957
(
2001
).
45.
46.
To remain consistent with Secs. II and III we label the absorption vibronic peaks as 0-0, 0-1,0-2,… in order of increasing energy, not to be confused with a similar labeling scheme for the PL progression.
47.
48.
H.
Fidder
,
J.
Knoester
, and
D. A.
Wiersma
,
J. Chem. Phys.
95
(
11
),
7880
7890
(
1991
).
49.
S. T.
Hoffmann
,
H.
Bassler
, and
A.
Kohler
,
J. Phys. Chem. B
114
(
51
),
17037
17048
(
2010
).
50.
See supplementary material at http://dx.doi.org/10.1063/1.4819906 for the absorption spectra of small oligomers calculated using the n-particle approximations (n = 1,2,3,4).
51.
F.
Paquin
,
H.
Yamagata
,
N. J.
Hestand
,
M.
Sakowicz
,
N.
Bérubé
,
M.
Côté
,
L. X.
Reynolds
,
S. A.
Haque
,
N.
Stingelin
,
F. C.
Spano
, and
C.
Silva
, “
Two-dimensional spatial coherence of excitons in semicrystalline polymeric semiconductors: The effect of molecular weight
,”
Phys. Rev. B
(submitted).
52.
E.
Collini
and
G. D.
Scholes
,
Science
323
(
5912
),
369
373
(
2009
).
53.
F. C.
Spano
,
S. C. J.
Meskers
,
E.
Hennebicq
, and
D.
Beljonne
,
J. Am. Chem. Soc.
129
,
7044
7054
(
2007
).
54.
C.
De Leener
,
E.
Hennebicq
,
J. C.
Sancho-Garcia
, and
D.
Beljonne
,
J. Phys. Chem. B
113
,
1311
1322
(
2009
).
56.
F.
Bär
,
W.
Huber
,
G.
Handschig
,
H.
Martin
, and
H.
Kuhn
,
J. Chem. Phys.
32
,
470
(
1960
).
57.
We are assuming that the disorder is independent of temperature, consistent with the observation that in many emissive conjugated polymer films the absorption line width does not dramatically change with temperature.
58.
J.
Gierschner
,
Y. S.
Huang
,
B.
Van Averbeke
,
J.
Cornil
,
R. H.
Friend
, and
D.
Beljonne
,
J. Chem. Phys.
130
(
4
),
044105
(
2009
).
59.
W.
Barford
,
J. Chem. Phys.
126
(
13
),
134905
(
2007
).
60.
J.
Cornil
,
D. A.
dos Santos
,
X.
Crispin
,
R.
Silbey
, and
J. L.
Bredas
,
J. Am. Chem. Soc.
120
,
1289
(
1998
).
61.
E. S.
Manas
and
F. C.
Spano
,
J. Chem. Phys.
109
,
8087
(
1998
).
62.
J.
Peet
,
E.
Brocker
,
Y. H.
Xu
, and
G. C.
Bazan
,
Adv. Mater.
20
(
10
),
1882
1885
(
2008
).
63.
A. L. T.
Khan
,
P.
Sreearunothai
,
L. M.
Herz
,
M. J.
Banach
, and
A.
Kohler
,
Phys. Rev. B
69
(
8
),
085201
(
2004
).

Supplementary Material

You do not currently have access to this content.