The structural and vibrational properties of phenanthrene are measured at high pressures up to 30.2 GPa by Raman spectroscopy and synchrotron X-ray diffraction techniques. Two phase transitions are observed in the Raman spectra at pressures of 2.3 GPa and 5.4 GPa which correspond to significant changes of intermolecular and intramolecular vibrational modes. Above 10.2 GPa, all the Raman peaks are lost within the fluorescence background; however, upon further compression above 20.0 GPa, three broad peaks are observed at 1600, 2993, and 3181 cm−1, indicating that phenanthrene has transformed into amorphous phase. Using X-ray diffraction, the structures of corresponding phases observed from Raman spectra are indexed with space groups of P21 for phase I (0-2.2 GPa), P2/m for phase II (2.2-5.6 GPa), P2/m+Pmmm for phase III (5.6-11.4 GPa) which has a coexistence of structures, and above 11.4 GPa the structure is indexed with space group of Pmmm. Although phenanthrene has transformed to a hydrogenated amorphous carbon structure above 20.0 GPa, these amorphous clusters still show characteristic crystalline behavior based on our X-ray diffraction patterns. Our results suggest that the long-range periodicity and the local disorder state coexist in phenanthrene at high pressures.

1.
M.
Pope
and
C. E.
Swenberg
,
Electronic Processes in Organic Crystals and Polymers
(
Oxford University Press
,
New York
,
1999
).
2.
E. A.
Silinsh
and
V.
Capek
,
Organic Molecular Crystals: Interaction, Localization, and Transport Phenomena
(
Springer-Verlag
,
Berlin
,
1994
).
3.
R.
Farchioni
and
G.
Grosso
,
Organic Electronic Materials: Conjugated Polymers and Low Molecular Weight Organic Solids
(
Springer
,
Berlin
,
2001
).
4.
R.
Mitsuhashi
,
Y.
Suzuki
,
Y.
Yamanari
, and
H.
Mitamura
,
Nature (London)
464
,
76
(
2010
).
5.
X. F.
Wang
,
R. H.
Liu
,
Z.
Gui
,
Y. L.
Xie
,
Y. J.
Yan
,
J. J.
Ying
,
X. G.
Luo
, and
X. H.
Chen
,
Nat. Commun.
2
,
507
(
2011
).
6.
X. F.
Wang
,
Y. J.
Yan
,
Z.
Gui
,
R. H.
Liu
,
J. J.
Ying
,
X. G.
Luo
, and
X. H.
Chen
,
Phys. Rev. B
84
,
214523
(
2011
).
7.
Y.
Kubozono
 et al,
Phys. Chem. Chem. Phys.
13
,
16476
(
2011
).
8.
M.
Xue
,
T.
Cao
,
D.
Wang
,
Y.
Wu
,
H.
Yang
,
X.
Dong
,
J.
He
,
F.
Li
, and
G. F.
Chen
,
Sci. Rep.
2
,
389
(
2012
).
9.
T.
Kato
,
K.
Yoshizawa
, and
K.
Hirao
,
J. Chem. Phys.
116
,
3420
(
2002
).
10.
G. H.
Zhong
,
C.
Zhang
,
G. F.
Wu
,
Z. B.
Huang
,
X. J.
Chen
, and
H. Q.
Lin
,
J. Appl. Phys.
113
,
17E131
(
2013
).
11.
R. B.
Aust
,
W. H.
Bentley
, and
H. G.
Drickamer
,
J. Chem. Phys.
41
,
1856
(
1964
).
12.
L.
Zhao
,
B. J.
Baer
, and
E. L.
Chronister
,
J. Phys. Chem. A
103
,
1728
(
1999
).
13.
Z. A.
Dreger
,
H.
Lucas
, and
Y. M.
Gupta
,
J. Phys. Chem. B
107
,
9268
(
2003
).
14.
B.
Sun
,
Z. A.
Dreger
, and
Y. M.
Gupta
,
J. Phys. Chem. A
112
,
10546
(
2008
).
15.
S.
Fanetti
,
M.
Citroni
,
L.
Malavasi
,
G. A.
Artioli
,
P.
Postorino
, and
R.
Bini
,
J. Phys. Chem. C
117
,
5343
(
2013
).
16.
F.
Capitani
,
M.
Hoppner
,
B.
Joseph
,
L.
Malavasi
,
G. A.
Artioli
,
L.
Baldassarre
,
A.
Perucchi
,
M.
Piccinini
,
S.
Lupi
,
P.
Dore
,
L.
Boeri
, and
P.
Postorino
, “
A combined experimental and computational study of the pressure dependence of the vibrational spectrum of solid picene C22H14
,” e-print arXiv:1306.1030 [cond-mat.supr-con] (unpublished).
17.
P. F.
Jones
and
M.
Nicol
,
J. Chem. Phys.
48
,
5440
(
1968
).
18.
See the sample information at www.tcichemicals.com.
19.
H. K.
Mao
,
P. M.
Bell
,
J. W.
Shaner
, and
D. J.
Steinberg
,
J. Appl. Phys.
49
,
3276
(
1978
).
20.
L. D.
Landau
and
E. M.
Lifshitz
,
Mechanics
, 3rd ed. (
Pergamon Press
,
1976
).
21.
I.
Bandyopadhyay
and
S.
Manogaran
,
J. Mol. Struct.: THEOCHEM
507
,
217
(
2000
).
22.
A. M. R.
Teixeira
,
P. T. C.
Freire
,
A. J. D.
Moreno
,
J. M.
Sasaki
,
A. P.
Ayala
,
J. M.
Filho
, and
F. E. A.
Melo
,
Solid State Commun.
116
,
405
(
2000
).
23.
A.
Bree
,
F. G.
Solven
, and
V. V. B.
Vilkos
,
J. Mol. Spectrosc.
44
,
298
(
1972
).
24.
J. M. L.
Martin
,
J.
El-Yazal
, and
J.
Franc¨¹ois
,
J. Phys. Chem.
100
,
15358
(
1996
).
25.
B. R.
Jackson
,
C. C.
Trout
, and
J. V.
Badding
,
Chem. Mater.
15
,
1820
(
2003
).
26.
A. C.
Ferrari
and
J.
Robertson
,
Phys. Rev. B.
64
,
075414
(
2001
).
27.
K.
Mimuraa
,
T.
Araoa
,
M.
Sugiurab
, and
R.
Sugisakic
,
Carbon
41
,
2547
(
2003
).
28.
L.
Ciabini
,
M.
Santoro
,
F. A.
Gorelli
,
R.
Bini
,
V.
Schettino
, and
S.
Raugei
,
Nature Mater.
6
,
39
(
2006
).
29.
L.
Ciabini
,
M.
Santoro
,
R.
Bini
, and
V.
Schettino
,
J. Chem. Phys.
116
,
2928
(
2002
).
30.
L.
Ciabini
,
M.
Santoro
,
R.
Bini
, and
V.
Schettino
,
Phys. Rev. Lett.
88
,
085505
(
2002
).
31.
S.
Wiederhorn
and
H. G.
Drickamer
,
J. Phys. Chem. Solids
9
,
330
(
1959
).
32.
K.
Weinmeier
,
P.
Puschnig
,
C.
Ambrosch-Draxl
,
G.
Heimel
,
E.
Zojer
, and
R.
Resel
,
Mater. Res. Soc. Symp. Proc.
665
,
C8
20
(
2001
).
33.
A. C.
Larson
and
R. B.
Von-Dreele
, GSAS-General Structure Analysis System, Report LAUR 86-748, Los Alamos National Laboratory, USA,
1994
.
34.
A.
Boultif
and
D.
Louer
,
J. Appl. Crystallogr.
37
,
724
(
2004
).
35.
D.
Louer
and
A.
Boultif
,
Z. Kristallogr.
26
,
191
(
2007
).
36.
T.
Yamamoto
,
S.
Nakatani
,
T.
Nakamura
,
K.
Mizuno
,
A. H.
Matsui
,
Y.
Akahama
, and
H.
Kawamura
,
Chem. Phys.
184
,
247
(
1994
).
38.
M.
Oehzelt
,
R.
Resel
, and
A.
Nakayama
,
Phys. Rev. B
66
,
174104
(
2002
).
39.
M.
Oehzelt
,
G.
Heimel
,
R.
Resel
,
P.
Puschnig
,
K.
Hummer
,
C.
Ambrosch-Draxl
,
K.
Takemura
, and
A.
Nakayama
,
J. Chem. Phys.
119
,
1078
(
2003
).
40.
L.
Wang
,
B. B.
Liu
,
H.
Li
,
W. G.
Yang
,
Y.
Ding
,
S. V.
Sinogeikin
,
Y.
Meng
,
Z. X.
Liu
,
X. C.
Zeng
, and
W. L.
Mao
,
Science
337
,
825
(
2012
).
You do not currently have access to this content.