Analytic energy gradients for the orbital-optimized third-order Møller–Plesset perturbation theory (OMP3) [U. Bozkaya, J. Chem. Phys.135, 224103 (2011)] https://doi.org/10.1063/1.3665134 are presented. The OMP3 method is applied to problematic chemical systems with challenging electronic structures. The performance of the OMP3 method is compared with those of canonical second-order Møller-Plesset perturbation theory (MP2), third-order Møller-Plesset perturbation theory (MP3), coupled-cluster singles and doubles (CCSD), and coupled-cluster singles and doubles with perturbative triples [CCSD(T)] for investigating equilibrium geometries, vibrational frequencies, and open-shell reaction energies. For bond lengths, the performance of OMP3 is in between those of MP3 and CCSD. For harmonic vibrational frequencies, the OMP3 method significantly eliminates the singularities arising from the abnormal response contributions observed for MP3 in case of symmetry-breaking problems, and provides noticeably improved vibrational frequencies for open-shell molecules. For open-shell reaction energies, OMP3 exhibits a better performance than MP3 and CCSD as in case of barrier heights and radical stabilization energies. As discussed in previous studies, the OMP3 method is several times faster than CCSD in energy computations. Further, in analytic gradient computations for the CCSD method one needs to solve λ-amplitude equations, however for OMP3 one does not since

$\lambda _{ab}^{ij(1)} = t_{ij}^{ab(1)}$
λabij(1)=tijab(1) and
$\lambda _{ab}^{ij(2)} = t_{ij}^{ab(2)}$
λabij(2)=tijab(2)
. Additionally, one needs to solve orbital Z-vector equations for CCSD, but for OMP3 orbital response contributions are zero owing to the stationary property of OMP3. Overall, for analytic gradient computations the OMP3 method is several times less expensive than CCSD (roughly ∼4–6 times). Considering the balance of computational cost and accuracy we conclude that the OMP3 method emerges as a very useful tool for the study of electronically challenging chemical systems.

1.
N. C.
Handy
and
H. F.
Schaefer
,
J. Chem. Phys.
81
,
5031
(
1984
).
2.
C. D.
Sherrill
,
A. I.
Krylov
,
E. F. C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
4171
(
1998
).
3.
U.
Bozkaya
,
J. M.
Turney
,
Y.
Yamaguchi
,
H. F.
Schaefer
, and
C. D.
Sherrill
,
J. Chem. Phys.
135
,
104103
(
2011
).
4.
U.
Bozkaya
,
J. Chem. Phys.
135
,
224103
(
2011
).
5.
U.
Bozkaya
and
C. D.
Sherrill
,
J. Chem. Phys.
138
,
184103
(
2013
).
6.
U.
Bozkaya
and
C. D.
Sherrill
,
J. Chem. Phys.
139
,
054104
(
2013
).
7.
W.
Kurlancheek
and
M.
Head-Gordon
,
Mol. Phys.
107
,
1223
(
2009
).
8.
J. F.
Stanton
,
J.
Gauss
, and
R. J.
Bartlett
,
J. Chem. Phys.
97
,
5554
(
1992
).
9.
E. R.
Davidson
and
W. T.
Borden
,
J. Chem. Phys.
87
,
4783
(
1983
).
10.
W. D.
Allen
,
D. A.
Horner
,
R. L.
DeKock
,
R. B.
Remington
, and
H. F.
Schaefer
,
Chem. Phys.
133
,
11
(
1989
).
11.
R. S.
Grev
,
I. L.
Alberts
, and
H. F.
Schaefer
,
J. Phys. Chem.
94
,
3379
(
1990
).
12.
Y.
Xie
,
W. D.
Allen
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Chem. Phys.
104
,
7615
(
1996
).
13.
N. A.
Burton
,
I. L.
Alberts
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Phys. Chem.
95
,
7466
(
1991
).
14.
T. D.
Crawford
,
J. F.
Stanton
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Chem. Phys.
107
,
10626
(
1997
).
15.
P. Y.
Ayala
and
H. B.
Schlegel
,
J. Chem. Phys.
108
,
7560
(
1998
).
16.
N. J.
Russ
,
T. D.
Crawford
, and
G. S.
Tschumper
,
J. Chem. Phys.
120
,
7298
(
2004
).
17.
B.
Mintz
and
T. D.
Crawford
,
Phys. Chem. Chem. Phys.
12
,
15459
(
2010
).
18.
T. B.
Pedersen
,
H.
Koch
, and
C.
Hättig
,
J. Chem. Phys.
110
,
8318
(
1999
).
19.
T. B.
Pedersen
,
B.
Fernández
, and
H.
Koch
,
J. Chem. Phys.
114
,
6983
(
2001
).
20.
A. I.
Krylov
,
C. D.
Sherrill
,
E. F. C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
10669
(
1998
).
21.
A. I.
Krylov
,
C. D.
Sherrill
, and
M.
Head-Gordon
,
J. Chem. Phys.
113
,
6509
(
2000
).
22.
S. R.
Gwaltney
,
C. D.
Sherrill
,
M.
Head-Gordon
, and
A. I.
Krylov
,
J. Chem. Phys.
113
,
3548
(
2000
).
23.
G. D.
Purvis
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
24.
G. E.
Scuseria
and
H. F.
Schaefer
,
Chem. Phys. Lett.
142
,
354
(
1987
).
25.
A.
Köhn
and
J.
Olsen
,
J. Chem. Phys.
122
,
084116
(
2005
).
26.
R. C.
Lochan
and
M.
Head-Gordon
,
J. Chem. Phys.
126
,
164101
(
2007
).
27.
F.
Neese
,
T.
Schwabe
,
S.
Kossmann
,
B.
Schirmer
, and
S.
Grimme
,
J. Chem. Theory Comput.
5
,
3060
(
2009
).
28.
S.
Kossmann
and
F.
Neese
,
J. Phys. Chem. A
114
,
11768
(
2010
).
29.
U.
Bozkaya
and
H. F.
Schaefer
,
J. Chem. Phys.
136
,
204114
(
2012
).
30.
E.
Soydaş
and
U.
Bozkaya
,
J. Chem. Theory Comput.
9
,
1452
(
2013
).
31.
J. B.
Robinson
and
P. J.
Knowles
,
J. Chem. Phys.
138
,
074104
(
2013
).
32.
W.
Kurlancheek
,
K.
Lawler
,
R. C.
Lochan
, and
M.
Head-Gordon
,
J. Chem. Phys.
136
,
054113
(
2012
).
33.
C.
Kollmar
and
A.
Heßelmann
,
Theor. Chem. Acc.
127
,
311
(
2010
).
34.
C.
Kollmar
and
F.
Neese
,
J. Chem. Phys.
135
,
084102
(
2011
).
35.
S.
Grimme
,
J. Chem. Phys.
118
,
9095
(
2003
).
36.
S.
Grimme
,
J. Comput. Chem.
24
,
1529
(
2003
).
37.
S.
Grimme
,
WIREs Comput. Mol. Sci.
2
,
886
(
2012
).
38.
M.
Gerenkamp
and
S.
Grimme
,
Chem. Phys. Lett.
392
,
229
(
2004
).
39.
Y.
Jung
,
R. C.
Lochan
,
A. D.
Dutoi
, and
M.
Head-Gordon
,
J. Chem. Phys.
121
,
9793
(
2004
).
40.
J. B.
Robinson
and
P. J.
Knowles
,
J. Chem. Phys.
135
,
044113
(
2011
).
41.
J. B.
Robinson
and
P. J.
Knowles
,
J. Chem. Phys.
136
,
054114
(
2012
).
42.
R. A.
Chiles
and
C. E.
Dykstra
,
J. Chem. Phys.
74
,
4544
(
1981
).
43.
N. C.
Handy
,
J. A.
Pople
,
M.
Head-Gordon
,
K.
Raghavachari
, and
G. W.
Trucks
,
Chem. Phys. Lett.
164
,
185
(
1989
).
44.
C.
Hampel
,
K. A.
Peterson
, and
H.-J.
Werner
,
Chem. Phys. Lett.
190
,
1
(
1992
).
45.
K.
Raghavachari
,
J. A.
Pople
,
E. S.
Replogle
,
M.
Head-Gordon
, and
N. C.
Handy
,
Chem. Phys. Lett.
167
,
115
(
1990
).
46.
G. E.
Scuseria
,
Chem. Phys. Lett.
226
,
251
(
1994
).
47.
R.
Kobayashi
,
N. C.
Handy
,
R. D.
Amos
,
G. W.
Trucks
,
M. J.
Frisch
, and
J. A.
Pople
,
J. Chem. Phys.
95
,
6723
(
1991
).
48.
R.
Kobayashi
,
R. D.
Amos
, and
N. C.
Handy
,
Chem. Phys. Lett.
184
,
195
(
1991
).
49.
L. A.
Barnes
and
R.
Lindh
,
Chem. Phys. Lett.
223
,
207
(
1994
).
50.
T. D.
Crawford
,
T. J.
Lee
,
N. C.
Handy
, and
H. F.
Schaefer
,
J. Chem. Phys.
107
,
9980
(
1997
).
51.
T. D.
Crawford
and
J. F.
Stanton
,
J. Chem. Phys.
112
,
7873
(
2000
).
52.
J. M.
Turney
,
A. C.
Simmonett
,
R. M.
Parrish
,
E. G.
Hohenstein
,
F.
Evangelista
,
J. T.
Fermann
,
B. J.
Mintz
,
L. A.
Burns
,
J. J.
Wilke
,
M. L.
Abrams
,
N. J.
Russ
,
M. L.
Leininger
,
C. L.
Janssen
,
E. T.
Seidl
,
W. D.
Allen
,
H. F.
Schaefer
,
R. A.
King
,
E. F.
Valeev
,
C. D.
Sherrill
, and
T. D.
Crawford
,
WIREs Comput. Mol. Sci.
2
,
556
(
2011
).
53.
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
, and
R. J.
Bartlett
,
J. Chem. Phys.
94
,
4334
(
1991
).
54.
T. D.
Crawford
and
H. F.
Schaefer
,
Rev. Comput. Chem.
14
,
33
(
2000
).
55.
T. U.
Helgaker
and
J.
Almlöf
,
Int. J. Quantum Chem.
26
,
275
(
1984
).
56.
T. U.
Helgaker
, in
Geometrical Derivatives of Energy Surfaces and Molecular Properties
, edited by
P.
Jørgensen
and
J.
Simons
(
Springer
,
Reidel, Dordrecht
,
1986
), pp.
1
16
.
57.
T.
Helgaker
and
P.
Jørgensen
,
Adv. Quantum Chem.
19
,
183
(
1988
).
58.
J.
Simons
,
T. U.
Helgaker
, and
P.
Jørgensen
,
Chem. Phys.
86
,
413
(
1984
).
59.
R.
Shepard
,
Modern Electronic Structure Theory Part I
,
Advanced Series in Physical Chemistry
Vol.
2
, edited by
D. R.
Yarkony
, 1st ed. (
World Scientific Publishing Company
,
London
,
1995
), pp.
345
458
.
60.
T.
Helgaker
, in
The Encyclopedia of Computational Chemistry
, edited by
P. R.
Schleyer
,
N. L.
Allinger
,
T.
Clark
,
J.
Gasteiger
,
P. A.
Kollman
,
H. F.
Schaefer
, and
P. R.
Schreiner
(
Wiley
,
Chichester
,
1998
), pp.
1157
1169
.
61.
Y.
Yamaguchi
,
Y.
Osamura
,
J. D.
Goddard
, and
H. F.
Schaefer
,
A New Dimension to Quantum Chemistry: Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory
(
Oxford University Press
,
New York
,
1994
), pp.
29
52
.
62.
P.
Jørgensen
and
T.
Helgaker
,
J. Chem. Phys.
89
,
1560
(
1988
).
63.
T.
Helgaker
,
P.
Jørgensen
, and
N.
Handy
,
Theor. Chim. Acta.
76
,
227
(
1989
).
64.
T.
Helgaker
and
P.
Jørgensen
,
Theor. Chim. Acta.
75
,
111
(
1989
).
65.
J. E.
Rice
and
R. D.
Amos
,
Chem. Phys. Lett.
122
,
585
(
1985
).
66.
Y.
Yamaguchi
, and
H. F.
Schaefer
, in
Handbook of High-Resolution Spectroscopies
, edited by
M.
Quack
and
F.
Merkt
(
John Wiley & Sons
,
2011
), pp.
325
362
.
67.
See supplementary material at http://dx.doi.org/10.1063/1.4820877 for analytic gradients of the MP3 method.
68.
G. E.
Scuseria
,
C. L.
Janssen
, and
H. F.
Schaefer
,
J. Chem. Phys.
89
,
7382
(
1988
).
69.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
70.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
71.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
103
,
4572
(
1995
).
72.
T.
Helgaker
,
J.
Gauss
,
P.
Jørgensen
, and
J.
Olsen
,
J. Chem. Phys.
106
,
6430
(
1997
).
73.
K. L.
Bak
,
J.
Gauss
,
P.
Jørgensen
,
J.
Olsen
,
T.
Helgaker
, and
J. F.
Stanton
,
J. Chem. Phys.
114
,
6548
(
2001
).
74.
X.
Zhang
,
A. T.
Maccarone
,
M. R.
Nimlos
,
S.
Kato
,
V. M.
Bierbaum
,
G. B.
Ellison
,
B.
Ruscic
,
A. C.
Simmonett
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Chem. Phys.
126
,
044312
(
2007
).
75.
U.
Bozkaya
,
J. M.
Turney
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Chem. Phys.
132
,
064308
(
2010
).
76.
U.
Bozkaya
,
J. M.
Turney
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Chem. Phys.
136
,
164303
(
2012
).
77.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
78.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
79.
U.
Bozkaya
and
I.
Özkan
,
J. Org. Chem.
77
,
2337
(
2012
).
80.
U.
Bozkaya
and
I.
Özkan
,
J. Phys. Chem. A
116
,
2309
(
2012
).
81.
U.
Bozkaya
and
I.
Özkan
,
J. Phys. Chem. A
116
,
3274
(
2012
).
82.
U.
Bozkaya
and
I.
Özkan
,
J. Org. Chem.
77
,
5714
(
2012
).
83.
U.
Bozkaya
and
I.
Özkan
,
Phys. Chem. Chem. Phys.
14
,
14282
(
2012
).
84.
U.
Bozkaya
and
H. F.
Schaefer
,
Mol. Phys.
108
,
2491
(
2010
).
85.
E. F. C.
Byrd
,
C. D.
Sherrill
, and
M.
Head-Gordon
,
J. Phys. Chem. A
105
,
9736
(
2001
).
86.
G. J. O.
Beran
,
S. R.
Gwaltney
, and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
5
,
2488
(
2003
).
87.
G.
Knizia
,
T. B.
Adler
, and
H.-J.
Werner
,
J. Chem. Phys.
130
,
054104
(
2009
).
88.
A. C.
Scheiner
,
G. E.
Scuseria
,
J. E.
Rice
,
T. J.
Lee
, and
H. F.
Schaefer
,
J. Chem. Phys.
87
,
5361
(
1987
).
89.
E. A.
Salter
,
G. W.
Trucks
, and
R. J.
Bartlett
,
J. Chem. Phys.
90
,
1752
(
1989
).
90.
K. P.
Huber
and
G.
Herzberg
,
Molecular Spectra and Molecular Structure. Constants of Diatomic Molecules
(
Van Nostrand
,
Princeton
,
1979
), Vol.
4
.
91.
F. W.
Dalby
,
Can. J. Phys.
36
,
1336
(
1958
)
92.
L.
Halonen
and
T.-K.
Ha
,
J. Chem. Phys.
89
,
4885
(
1988
).
93.
G.
Pelz
,
K. M. T.
Yamada
, and
G.
Winnewisser
,
J. Mol. Spectrosc.
159
,
507
(
1993
).
94.
A. R.
Hoy
,
I. M.
Mills
, and
G.
Strey
,
Mol. Phys.
24
,
1265
(
1972
).
95.
R. A.
Creswell
and
A. G.
Robiette
,
Mol. Phys.
36
,
869
(
1978
).
96.
W. S.
Benedict
and
E. K.
Plyler
,
Can. J. Phys.
35
,
1235
(
1957
).
97.
M.
Carlotti
,
J. W. C.
Johns
, and
A.
Trombetti
,
Can. J. Phys.
52
,
340
(
1974
).
98.
A.
Baldacci
,
S.
Ghersetti
,
S. C.
Hurlock
, and
K. N.
Rao
,
J. Mol. Spectrosc.
59
,
116
(
1976
).
99.
G.
Winnewisser
,
A. G.
Maki
, and
D. R.
Johnson
,
J. Mol. Spectrosc.
39
,
149
(
1971
).
100.
H. C.
Allen
and
E. K.
Plyler
,
J. Am. Chem. Soc.
80
,
2673
(
1958
).
101.
D. L.
Gray
and
A. G.
Robiette
,
Mol. Phys.
37
,
1901
(
1979
).
102.
103.
P.
Jensen
and
P. R.
Bunker
,
J. Chem. Phys.
89
,
1327
(
1988
).
104.
G.
Graner
,
C.
Rossetti
, and
D.
Bailly
,
Mol. Phys.
58
,
627
(
1986
).
105.
T.
Tanaka
and
Y.
Morino
,
J. Mol. Spectrosc.
33
,
538
(
1970
).
106.
G.
Herzberg
,
Molecular Spectra and Molecular Structure. Spectra of Diatomic Molecules
(
Van Nostrand
,
New York
,
1950
), Vol.
1
.
107.
A. J.
Cormack
,
A. J.
Yencha
,
R. J.
Donovan
,
K. P.
Lawley
,
A.
Hopkirk
, and
G. C.
King
,
Chem. Phys.
213
,
439
(
1996
).
108.
K. K.
Irikura
,
J. Phys. Chem. Ref. Data
36
,
389
(
2007
).

Supplementary Material

You do not currently have access to this content.