Accurate and efficient simulation of excited state properties is an important and much aspired cornerstone in the study of adsorbate dynamics on metal surfaces. To this end, the recently proposed linear expansion Δ-self-consistent field method by Gavnholt et al [Phys. Rev. B78, 075441 (2008)]

presents an efficient alternative to time consuming quasi-particle calculations. In this method, the standard Kohn-Sham equations of density-functional theory are solved with the constraint of a non-equilibrium occupation in a region of Hilbert-space resembling gas-phase orbitals of the adsorbate. In this work, we discuss the applicability of this method for the excited-state dynamics of metal-surface mounted organic adsorbates, specifically in the context of molecular switching. We present necessary advancements to allow for a consistent quality description of excited-state potential-energy surfaces (PESs), and illustrate the concept with the application to Azobenzene adsorbed on Ag(111) and Au(111) surfaces. We find that the explicit inclusion of substrate electronic states modifies the topologies of intra-molecular excited-state PESs of the molecule due to image charge and hybridization effects. While the molecule in gas phase shows a clear energetic separation of resonances that induce isomerization and backreaction, the surface-adsorbed molecule does not. The concomitant possibly simultaneous induction of both processes would lead to a significantly reduced switching efficiency of such a mechanism.

1.
B.
Ferringa
,
Molecular Switches
(
Wiley-VCH
,
Weinheim
,
2001
).
2.
M.
Comstock
,
N.
Levy
,
A.
Kirakosian
,
J.
Cho
,
F.
Lauterwasser
,
J.
Harvey
,
D.
Strubbe
,
J.
Fréchet
,
D.
Trauner
,
S.
Louie
 et al,
Phys. Rev. Lett.
99
,
038301
(
2007
).
3.
M. J.
Comstock
,
N.
Levy
,
J.
Cho
,
L.
Berbil-Bautista
,
M. F.
Crommie
,
D. A.
Poulsen
, and
J. M. J.
Frechet
,
Appl. Phys. Lett.
92
,
123107
(
2008
).
4.
R.
Schmidt
,
S.
Hagen
,
D.
Brete
,
R.
Carley
,
C.
Gahl
,
J.
Dokić
,
P.
Saalfrank
,
S.
Hecht
,
P.
Tegeder
, and
M.
Weinelt
,
Phys. Chem. Chem. Phys.
12
,
4488
(
2010
).
5.
K.
Morgenstern
,
Prog. Surf. Sci.
86
,
115
(
2011
).
6.
M.
Comstock
,
J.
Cho
,
A.
Kirakosian
, and
M.
Crommie
,
Phys. Rev. B
72
,
153414
(
2005
).
7.
B.-Y.
Choi
,
S.-J.
Kahng
,
S.
Kim
,
H.
Kim
,
H.
Kim
,
Y.
Song
,
J.
Ihm
, and
Y.
Kuk
,
Phys. Rev. Lett.
96
,
156106
(
2006
).
8.
M.
Alemani
,
S.
Selvanathan
,
F.
Ample
,
M. V.
Peters
,
K.-H.
Rieder
,
F.
Moresco
,
C.
Joachim
,
S.
Hecht
, and
L.
Grill
,
J. Phys. Chem. C
112
,
10509
(
2008
).
9.
C.
Bronner
,
M.
Schulze
,
S.
Hagen
, and
P.
Tegeder
,
New J. Phys.
14
,
043023
(
2012
).
10.
R.
Maurer
and
K.
Reuter
,
Angew. Chem., Int. Ed.
51
,
12009
(
2012
).
11.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
12.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
13.
A.
Szabo
and
N.
Ostlund
,
Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
(
McGraw-Hill
,
New York
,
1989
).
14.
E.
Runge
and
E.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
15.
G.
Onida
,
L.
Reining
, and
A.
Rubio
,
Rev. Mod. Phys.
74
,
601
(
2002
).
16.
M.
Casida
,
J. Mol. Struct.: THEOCHEM
914
,
3
(
2009
).
17.
L.
Hedin
,
Phys. Rev.
139
,
A796
(
1965
).
18.
F.
Aryasetiawan
and
O.
Gunnarsson
,
Rep. Prog. Phys.
61
,
237
(
1998
).
19.
L.
Sham
and
T.
Rice
,
Phys. Rev.
144
,
708
(
1966
).
20.
W.
Hanke
and
L.
Sham
,
Phys. Rev. B
12
,
4501
(
1975
).
21.
E.
Gross
,
L.
Oliveira
, and
W.
Kohn
,
Phys. Rev. A
37
,
2809
(
1988
).
22.
M.
Weinert
and
J.
Davenport
,
Phys. Rev. B
45
,
13709
(
1992
).
23.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
24.
P.
Dederichs
,
S.
Blügel
,
R.
Zeller
, and
H.
Akai
,
Phys. Rev. Lett.
53
,
2512
(
1984
).
25.
B.
Kaduk
,
T.
Kowalczyk
, and
T.
Van Voorhis
,
Chem. Rev.
112
,
321
370
(
2012
).
26.
Q.
Wu
and
T.
Van Voorhis
,
J. Phys. Chem. A
110
,
9212
(
2006
).
27.
H.
Oberhofer
and
J.
Blumberger
,
J. Chem. Phys.
131
,
064101
(
2009
).
28.
H.
Oberhofer
and
J.
Blumberger
,
J. Chem. Phys.
133
,
244105
(
2010
).
29.
J.
Behler
,
B.
Delley
,
K.
Reuter
, and
M.
Scheffler
,
Phys. Rev. B
75
,
115409
(
2007
).
30.
J.
Behler
,
K.
Reuter
, and
M.
Scheffler
,
Phys. Rev. B
77
,
115421
(
2008
).
31.
E.
Clementi
,
C.
Roothaan
, and
M.
Yoshimine
,
Phys. Rev.
127
,
1618
(
1962
).
32.
O.
Gunnarsson
and
B.
Lundqvist
,
Phys. Rev. B
13
,
4274
(
1976
).
33.
T.
Ziegler
,
A.
Rauk
, and
E. J.
Baerends
,
Theor. Chem. Acc.
43
,
261
(
1977
).
34.
A.
Hellman
,
B.
Razaznejad
, and
B. I.
Lundqvist
,
J. Chem. Phys.
120
,
4593
(
2004
).
35.
T.
Baruah
and
M. R.
Pederson
,
J. Chem. Theory Comput.
5
,
834
(
2009
).
36.
T.
Kowalczyk
,
S. R.
Yost
, and
T.
Van Voorhis
,
J. Chem. Phys.
134
,
054128
(
2011
).
37.
R. J.
Maurer
and
K.
Reuter
,
J. Chem. Phys.
135
,
224303
(
2011
).
38.
S.
Kasamatsu
,
S.
Watanabe
, and
S.
Han
,
Phys. Rev. B
84
,
085120
(
2011
).
39.
T.
Baruah
,
M.
Olguin
, and
R. R.
Zope
,
J. Chem. Phys.
137
,
084316
(
2012
).
40.
B.
Himmetoglu
,
A.
Marchenko
,
I.
Dabo
, and
M.
Cococcioni
,
J. Chem. Phys.
137
,
154309
(
2012
).
41.
M. J. G.
Peach
,
P.
Benfield
,
T.
Helgaker
, and
D. J.
Tozer
,
J. Chem. Phys.
128
,
044118
(
2008
).
42.
P.
Wiggins
,
J. a. G.
Williams
, and
D. J.
Tozer
,
J. Chem. Phys.
131
,
091101
(
2009
).
43.
T.
Ziegler
,
M.
Seth
,
M.
Krykunov
,
J.
Autschbach
, and
F.
Wang
,
J. Chem. Phys.
130
,
154102
(
2009
).
44.
J.
Cullen
,
M.
Krykunov
, and
T.
Ziegler
,
Chem. Phys.
391
,
11
(
2011
).
45.
T.
Ziegler
,
M.
Krykunov
, and
J.
Cullen
,
J. Chem. Theory Comput.
7
,
2485
(
2011
).
46.
T.
Ziegler
,
M.
Krykunov
, and
J.
Cullen
,
J. Chem. Phys.
136
,
124107
(
2012
).
47.
A.
Görling
,
Phys. Rev. A
59
,
3359
(
1999
).
48.
P.
Ayers
and
M.
Levy
,
Phys. Rev. A
80
,
012508
(
2009
).
49.
J.
Gavnholt
,
T.
Olsen
,
M.
Engelund
, and
J.
Schiøtz
,
Phys. Rev. B
78
,
075441
(
2008
).
50.
T.
Olsen
,
J.
Gavnholt
, and
J.
Schiøtz
,
Phys. Rev. B
79
,
035403
(
2009
).
51.
P.
Zawadzki
,
J.
Rossmeisl
, and
K. W.
Jacobsen
,
Phys. Rev. B
84
,
121203
(R) (
2011
).
52.
J.
Garcia-Lastra
and
K.
Thygesen
,
Phys. Rev. Lett.
106
,
187402
(
2011
).
53.
S.
Clark
,
M.
Segall
,
C.
Pickard
,
P.
Hasnip
,
M.
Probert
,
K.
Refson
, and
M.
Payne
,
Z. Kristallogr.
220
,
567
(
2005
).
54.
A.
Gross
,
Theoretical Surface Science: A Microscopic Perspective
(
Springer
,
2009
), p.
104
ff
.
55.
J.
Mortensen
,
L.
Hansen
, and
K.
Jacobsen
,
Phys. Rev. B
71
,
035109
(
2005
).
56.
J.
Enkovaara
,
C.
Rostgaard
,
J. J.
Mortensen
,
J.
Chen
,
M.
Dułak
,
L.
Ferrighi
,
J.
Gavnholt
,
C.
Glinsvad
,
V.
Haikola
,
H. A.
Hansen
,
H. H.
Kristoffersen
,
M.
Kuisma
,
A. H.
Larsen
,
L.
Lehtovaara
,
M.
Ljungberg
,
O.
Lopez-Acevedo
,
P. G.
Moses
,
J.
Ojanen
,
T.
Olsen
,
V.
Petzold
,
N. a.
Romero
,
J.
Stausholm-Møller
,
M.
Strange
,
G. A.
Tritsaris
,
M.
Vanin
,
M.
Walter
,
B.
Hammer
,
H.
Häkkinen
,
G. K. H.
Madsen
,
R. M.
Nieminen
,
J. K.
Nørskov
,
M.
Puska
,
T. T.
Rantala
,
J.
Schiøtz
,
K. S.
Thygesen
, and
K. W.
Jacobsen
,
J. Phys. Condens. Matter
22
,
253202
(
2010
).
57.
J.
Plotner
,
D. J.
Tozer
, and
A.
Dreuw
,
J. Chem. Theory Comput.
6
,
2315
(
2010
).
58.
A. D.
Dwyer
and
D. J.
Tozer
,
Phys. Chem. Chem. Phys.
12
,
2816
(
2010
).
59.
D. J.
Tozer
and
N. C.
Handy
,
J. Chem. Phys.
109
,
10180
(
1998
).
60.
M. C.
Payne
,
T. A.
Arias
, and
J. D.
Joannopoulos
,
Rev. Mod. Phys.
64
,
1045
(
1992
).
61.
P.
Hasnip
and
C.
Pickard
,
Comput. Phys. Commun.
174
,
24
(
2006
).
62.
E.
McNellis
,
J.
Meyer
,
A.
Baghi
, and
K.
Reuter
,
Phys. Rev. B
80
,
035414
(
2009
).
63.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
64.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
65.
E. R.
McNellis
,
J.
Meyer
, and
K.
Reuter
,
Phys. Rev. B
80
,
205414
(
2009
).
66.
A.
Tkatchenko
and
M.
Scheffler
,
Phys. Rev. Lett.
102
,
073005
(
2009
).
67.
H.
Rau
, in
Photochromism: Molecules and Systems
, edited by
H.
Dürr
and
H.
Bouas-Laurent
(
Elsevier
,
Amsterdam
,
2003
), p.
165
.
68.
T.
Nägele
,
R.
Hoche
,
W.
Zinth
, and
J.
Wachtveitl
,
Chem. Phys. Lett.
272
,
489
(
1997
).
69.
T.
Fujino
,
S. Y.
Arzhantsev
, and
T.
Tahara
,
Bull. Chem. Soc. Jpn.
75
,
1031
(
2002
).
70.
T.
Schultz
,
J.
Quenneville
,
B.
Levine
,
A.
Toniolo
,
T. J.
Martínez
,
S.
Lochbrunner
,
M.
Schmitt
,
J. P.
Shaffer
,
M. Z.
Zgierski
, and
A.
Stolow
,
J. Am. Chem. Soc.
125
,
8098
(
2003
).
71.
H.
Satzger
,
S.
Spörlein
,
C.
Root
,
J.
Wachtveitl
,
W.
Zinth
, and
P.
Gilch
,
Chem. Phys. Lett.
372
,
216
(
2003
).
72.
H.
Satzger
,
C.
Root
, and
M.
Braun
,
J. Phys. Chem. A
108
,
6265
(
2004
).
73.
P.
Cattaneo
and
M.
Persico
,
Phys. Chem. Chem. Phys.
1
,
4739
(
1999
).
74.
A.
Cembran
,
F.
Bernardi
,
M.
Garavelli
,
L.
Gagliardi
, and
G.
Orlandi
,
J. Am. Chem. Soc.
126
,
3234
(
2004
).
75.
I.
Conti
,
M.
Garavelli
, and
G.
Orlandi
,
J. Am. Chem. Soc.
130
,
5216
(
2008
).
76.
S.
Yuan
,
Y.
Dou
,
W.
Wu
,
Y.
Hu
, and
J.
Zhao
,
J. Phys. Chem. A
112
,
13326
(
2008
).
77.
Y.
Ootani
,
K.
Satoh
,
A.
Nakayama
,
T.
Noro
, and
T.
Taketsugu
,
J. Chem. Phys.
131
,
194306
(
2009
).
78.
M.
Böckmann
,
N. L.
Doltsinis
, and
D.
Marx
,
J. Phys. Chem. A
114
,
745
(
2010
).
79.
H.
Rau
and
E.
Lueddecke
,
J. Am. Chem. Soc.
104
,
1616
(
1982
).
80.
H.
Rau
,
J. Photochem.
26
,
221
(
1984
).
81.
C.-W.
Chang
,
Y.-C.
Lu
,
T.-T.
Wang
, and
E. W.-G.
Diau
,
J. Am. Chem. Soc.
126
,
10109
(
2004
).
82.
J.
Shao
,
Y.
Lei
,
Z.
Wen
,
Y.
Dou
, and
Z.
Wang
,
J. Chem. Phys.
129
,
164111
(
2008
).
83.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
,
Chem. Phys. Lett.
243
,
409
(
1995
).
84.
F.-W.
Schulze
,
H.-J.
Petrick
,
H. K.
Cammenga
, and
H.
Klinge
,
Z. Phys. Chem.
107
,
1
(
1977
).
85.
F.
Della Sala
and
A.
Görling
,
Phys. Rev. Lett.
89
,
033003
(
2002
).
86.
S.
Hagen
,
F.
Leyssner
,
D.
Nandi
,
M.
Wolf
, and
P.
Tegeder
,
Chem. Phys. Lett.
444
,
85
(
2007
).
87.
M.
Wolf
and
P.
Tegeder
,
Surf. Sci.
603
,
1506
(
2009
).
88.
J.
Andersson
,
R.
Petterson
, and
L.
Tegner
,
J. Photochem.
20
,
17
(
1982
).
89.
G.
Floß
,
G.
Granucci
, and
P.
Saalfrank
,
J. Chem. Phys.
137
,
234701
(
2012
).
90.
Q.
Hu
,
K.
Reuter
, and
M.
Scheffler
,
Phys. Rev. Lett.
98
,
176103
(
2007
).
91.
A.
Stroppa
and
G.
Kresse
,
New J. Phys.
10
,
063020
(
2008
).
You do not currently have access to this content.