The quantum-classical Liouville equation offers a rigorous approach to nonadiabatic quantum dynamics based on surface hopping type trajectories. However, in practice the applicability of this approach has been limited to short times owing to unfavorable numerical scaling. In this paper we show that this problem can be alleviated by combining it with a formally exact generalized quantum master equation treatment. This allows dramatic improvements in the efficiency of the approach in nonadiabatic regimes, making it computationally tractable to treat the quantum dynamics of complex systems for long times. We demonstrate our approach by applying it to a model of condensed phase charge transfer where our method is shown to be numerically exact in regimes where fewest-switches surface hopping and mean field approaches fail to obtain either the correct rates or long-time populations.

1.
R. A.
Marcus
,
Annu. Rev. Phys. Chem.
15
,
155
(
1964
).
2.
R. A.
Marcus
and
N.
Sutin
,
Biochim. Biophys. Acta
811
,
265
(
1985
).
3.
R. P.
Bell
,
The Proton in Chemistry
(
Chapmann & Hall
,
London
,
1973
).
4.
G.
Hanna
and
R.
Kapral
,
J. Chem. Phys.
122
,
244505
(
2005
).
5.
R.
Cukier
and
D.
Nocera
,
Annu. Rev. Phys. Chem.
49
,
337
(
1998
).
7.
S.
Hammes-Schiffer
and
A. V.
Soudackov
,
J. Phys. Chem. B
112
,
14108
(
2008
).
8.
G. S.
Engel
,
T. R.
Calhoun
,
E. L.
Read
,
T.-K.
Ahn
,
T.
Mancal
,
Y.-C.
Cheng
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature (London)
446
,
782
786
(
2007
).
9.
H.
Lee
,
Y.-C.
Cheng
, and
G. R.
Fleming
,
Science
316
,
1462
1465
(
2007
).
10.
E.
Collini
and
G. D.
Scholes
,
Science
323
,
369
373
(
2009
).
11.
A.
Ishizaki
and
G. R.
Fleming
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
17255
(
2009
).
12.
Y.
Tanimura
and
R.
Kubo
,
J. Phys. Soc. Jpn.
58
,
101
(
1989
).
13.
Y.
Tanimura
and
P. G.
Wolynes
,
Phys. Rev. A
43
,
4131
(
1991
).
14.
15.
D. E.
Makarov
and
N.
Makri
,
Chem. Phys. Lett.
221
,
482
(
1994
).
16.
N.
Makri
and
D. E.
Makarov
,
J. Chem. Phys.
102
,
4600
(
1995
).
17.
N.
Makri
and
D. E.
Makarov
,
J. Chem. Phys.
102
,
4611
(
1995
).
18.
R.
Egger
and
C.
Mak
,
Phys. Rev. B
50
,
15210
(
1994
).
19.
A. A.
Golosov
,
R.
Friesner
, and
P.
Pechukas
,
J. Chem. Phys.
110
,
138
(
1999
).
20.
C.
Meier
and
D. J.
Tannor
,
J. Chem. Phys.
111
,
3365
(
1999
).
21.
R.
Xu
and
Y.
Yan
,
J. Chem. Phys.
116
,
9196
(
2002
).
22.
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
119
,
12063
(
2003
).
23.
U.
Kleinekathöfer
,
J. Chem. Phys.
121
,
2505
(
2004
).
24.
L.
Mühlbacher
and
E.
Rabani
,
Phys. Rev. Lett.
100
,
176403
(
2008
).
25.
G.
Cohen
and
E.
Rabani
,
Phys. Rev. B
84
,
075150
(
2011
).
27.
J.
Tully
,
J. Chem. Phys.
137
,
22A301
(
2012
).
28.
T. C.
Berkelbach
,
D. R.
Reichman
, and
T. E.
Markland
,
J. Chem. Phys.
136
,
034113
(
2012
).
29.
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
118
,
8173
(
2003
).
30.
J. A.
Poulsen
,
G.
Nyman
, and
P. J.
Rossky
,
J. Chem. Phys.
119
,
12179
(
2003
).
31.
32.
S.
Bonella
,
G.
Ciccotti
, and
R.
Kapral
,
Chem. Phys. Lett.
484
,
399
(
2010
).
33.
X.
Sun
,
H. B.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
109
,
7064
(
1998
).
34.
S.
Bonella
and
D. F.
Coker
,
J. Chem. Phys.
122
,
194102
(
2005
).
35.
H.
Kim
,
A.
Nassimi
, and
R.
Kapral
,
J. Chem. Phys.
129
,
084102
(
2008
).
36.
W. H.
Miller
,
J. Chem. Phys.
136
,
210901
(
2012
).
37.
W. H.
Miller
,
J. Chem. Phys.
53
,
3578
(
1970
).
38.
E.
Dunkel
,
S.
Bonella
, and
D. F.
Coker
,
J. Chem. Phys.
129
,
114106
(
2008
).
39.
P.
Huo
and
D. F.
Coker
,
J. Chem. Phys.
137
,
22A535
(
2012
).
40.
R.
Kapral
and
G.
Ciccotti
,
J. Chem. Phys.
110
,
8919
(
1999
).
41.
J. C.
Tully
and
R. K.
Preston
,
J. Chem. Phys.
93
,
1061
(
1990
).
42.
J. C.
Tully
,
J. Chem. Phys.
55
,
562
(
1971
).
43.
E. R.
Bittner
and
P. J.
Rossky
,
J. Chem. Phys.
103
,
8130
(
1995
).
44.
O. V.
Prezhdo
and
P. J.
Rossky
,
J. Chem. Phys.
107
,
5863
(
1997
).
45.
J. E.
Subotnik
and
N.
Shenvi
,
J. Chem. Phys.
134
,
024105
(
2011
).
46.
P.
Shushkov
,
R.
Li
, and
J. C.
Tully
,
J. Chem. Phys.
137
,
22A549
(
2012
).
47.
B. R.
Landry
and
J. E.
Subotnik
,
J. Chem. Phys.
135
,
191101
(
2011
).
48.
B. R.
Landry
and
J. E.
Subotnik
,
J. Chem. Phys.
137
,
22A513
(
2012
).
49.
M. J.
Bedard-Hearn
,
R. E.
Larsen
, and
B. J.
Schwartz
,
J. Chem. Phys.
123
,
234106
(
2005
).
50.
D.
MacKernan
,
G.
Ciccotti
, and
R.
Kapral
,
J. Phys.: Condens. Matter
14
,
9069
(
2002
).
51.
D.
MacKernan
,
R.
Kapral
, and
G.
Ciccotti
,
J. Phys. Chem. B
112
,
424
(
2008
).
52.
A.
Kelly
and
R.
Kapral
,
J. Chem. Phys.
133
,
084502
(
2010
).
53.
S.
Nakajima
,
Prog. Theor. Phys.
20
,
948
(
1958
).
54.
R.
Zwanzig
,
J. Chem. Phys.
33
,
1338
(
1960
).
55.
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
120
,
10647
(
2004
).
56.
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
121
,
3393
(
2004
).
57.
M.-L.
Zhang
,
B. J.
Ka
, and
E.
Geva
,
J. Chem. Phys.
125
,
044106
(
2006
).
58.
A.
Leggett
,
S.
Chakravarty
,
A.
Dorsey
,
M.
Fisher
,
A.
Garg
, and
R.
Zwerger
,
Rev. Mod. Phys.
59
,
1
(
1987
).
59.
U.
Weiss
,
Quantum Dissipative Systems
(
World Scientific
,
Singapore
,
1992
).
60.
K.
Imre
,
E.
Özizmir
,
M.
Rosenbaum
, and
P. F.
Zweifel
,
J. Math. Phys.
8
,
1097
(
1967
).
61.
G.
Tao
and
W. H.
Miller
,
J. Phys. Chem. Lett.
1
,
891
(
2010
).
62.
A.
Kelly
and
Y. M.
Rhee
,
J. Phys. Chem. Lett.
2
,
808
(
2011
).
63.
A.
Kelly
,
R.
van Zon
,
J.
Schofield
, and
R.
Kapral
,
J. Chem. Phys.
136
,
084101
(
2012
).
64.
N.
Ananth
,
C.
Venkataraman
, and
W. H.
Miller
,
J. Chem. Phys.
127
,
084114
(
2007
).
65.
U.
Müller
and
G.
Stock
,
J. Chem. Phys.
107
,
6230
(
1997
).
66.
M.
Ben-Nun
and
T. J.
Martínez
,
Isr. J. Chem.
47
,
75
88
(
2007
).
68.
A.
Garg
,
J. N.
Onuchic
, and
V.
Ambegaokar
,
J. Chem. Phys.
83
,
4491
(
1985
).
69.
L.
Mühlbacher
and
R.
Egger
,
Chem. Phys.
296
,
193
(
2004
).
70.
J. R.
Schmidt
,
P. V.
Parandekar
, and
J. C.
Tully
,
J. Chem. Phys.
129
,
044104
(
2008
).
71.
W.
Xie
,
S.
Bai
,
L.
Zhu
, and
Q.
Shi
, “
Calculation of electron transfer rates using mixed quantum classical approaches: Nonadiabatic limit and beyond
,”
J. Phys. Chem. A
(to be published).
You do not currently have access to this content.