Molecular origin of the well-known specific heat anomaly in supercooled liquid water is investigated here by using extensive computer simulations and theoretical analyses. A rather sharp increase in the values of isobaric specific heat with lowering temperature and the weak temperature dependence of isochoric specific heat in the same range are reproduced in simulations. We calculated the spatio-temporal correlation among temperature fluctuations and examined the frequency dependent specific heat. The latter shows a rapid growth in the low frequency regime as temperature is cooled below 270 K. In order to understand the microscopic basis of this increase, we have performed a shellwise decomposition of contributions of distant molecules to the temperature fluctuations in a central molecule. This decomposition reveals the emergence, at low temperatures, of temporally slow, spatially long ranged large temperature fluctuations. The temperature fluctuation time correlation function (TFCF) can be fitted to a William-Watts stretched exponential form with the stretching parameter close to 0.6 at low temperatures, indicating highly non-exponential relaxation. Temperature dependence of the relaxation time of the correlation function can be fitted to Vogel-Fulcher-Tamermann expression which provides a quantitative measure of the fragility of the liquid. Interestingly, we find that the rapid growth in the relaxation time of TFCF with lowering temperature undergoes a sharp crossover from a markedly fragile state to a weakly fragile state around 220 K.

1.
C. A.
Angell
,
Annu. Rev. Phys. Chem.
34
,
593
(
1983
).
2.
P. G.
Debenedetti
,
Metastable Liquids: Concepts and Principles
(
Princeton University Press
,
Princeton
,
1996
).
3.
H. E.
Stanley
,
P.
Kumar
,
L.
Xu
,
Z.
Yan
,
M. G.
Mazza
,
S. V.
Buldyrev
,
S.-H.
Chen
, and
F.
Mallamaced
,
Physica A
386
,
729
(
2007
).
4.
C. A.
Angell
,
J.
Shuppert
, and
J. C.
Tucker
,
J. Phys. Chem.
77
,
3092
(
1973
).
5.
C. A.
Angell
,
M.
Oguni
, and
W. J.
Sichina
,
J. Phys. Chem.
86
,
998
(
1982
).
6.
D. G.
Archer
and
R. W.
Carter
,
J. Phys. Chem. B
104
,
8563
(
2000
).
7.
E.
Tombari
,
C.
Ferrari
, and
G.
Salvetti
,
Chem. Phys. Lett.
300
,
749
(
1999
).
8.
R. J.
Speedy
and
C. A.
Angell
,
J. Chem. Phys.
65
,
851
(
1976
).
9.
R. J.
Speedy
,
J. Phys. Chem.
86
,
982
(
1982
).
10.
P. H.
Poole
,
F.
Sciortino
,
U.
Essmann
, and
H. E.
Stanley
,
Nature (London)
360
,
324
(
1992
).
11.
S.
Sastry
,
P. G.
Debenedetti
,
F.
Sciortino
, and
H. E.
Stanley
,
Phys. Rev. E
53
,
6144
(
1996
).
13.
F.
Sciortino
,
P. H.
Poole
,
U.
Essmann
, and
H. E.
Stanley
,
Phys. Rev. E
55
,
727
(
1997
).
14.
S.
Harrington
,
P. H.
Poole
,
F.
Sciortino
, and
H. E.
Stanley
,
J. Chem. Phys.
107
,
7443
(
1997
).
15.
D.
Paschek
and
A.
Geiger
,
J. Phys. Chem. B
103
(
20
),
4139
4146
(
1999
).
16.
M.
Yamada
,
S.
Mossa
,
H. E.
Stanley
, and
F.
Sciortino
,
Phys. Rev. Lett.
88
,
195701
(
2002
).
17.
L. M.
Xu
,
P.
Kumar
,
S. V.
Buldyrev
,
S. H.
Chen
,
P. H.
Poole
,
F.
Sciortino
, and
H. E.
Stanley
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
16558
(
2005
).
18.
P.
Jedlovszky
and
R.
Vallauri
,
J. Chem. Phys.
122
,
081101
(
2005
).
19.
Y.
Liu
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
,
J. Chem. Phys.
131
,
104508
(
2009
).
20.
J. L. F.
Abascal
and
C.
Vega
,
J. Chem. Phys.
133
,
234502
(
2010
).
21.
D. Z.
Liu
,
Y.
Zhang
,
C. C.
Chen
,
C. Y.
Mou
,
P. H.
Poole
, and
S. H.
Chen
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
9570
(
2007
).
22.
F.
Mallamace
,
M.
Broccio
,
C.
Corsaro
,
A.
Faraone
,
D.
Majolino
,
V.
Venuti
,
L.
Liu
,
C. Y.
Mou
, and
S. H.
Chen
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
424
(
2007
).
23.
F.
Mallamace
,
C.
Branca
,
M.
Broccio
,
C.
Corsaro
,
C. Y.
Mou
, and
S. H.
Chen
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
18387
(
2007
).
24.
F.
Mallamace
,
C.
Corsaro
,
M.
Broccio
,
C.
Branca
,
N.
Gonzalez-Segredo
,
J.
Spooren
,
S. H.
Chen
, and
H. E.
Stanley
,
Proc. Natl. Acad. Sci. U.S.A.
105
, 1
2725
(
2008
).
26.
M. A.
Ricci
,
F.
Bruni
, and
A.
Giuliani
,
Faraday Discuss.
141
,
347
(
2008
).
27.
D. T.
Limmer
and
D.
Chandler
,
J. Chem. Phys.
135
,
134503
(
2011
).
28.
V.
Molinero
and
E. B.
Moore
,
J. Phys. Chem. B
113
,
4008
(
2009
).
29.
E. B.
Moore
and
V.
Molinero
,
J. Chem. Phys.
130
,
244505
(
2009
).
30.
F. W.
Starr
,
C. A.
Angell
, and
H. E.
Stanley
,
Physica A
323
,
51
(
2003
).
31.
P.
Kumar
,
S. V.
Buldyrev
,
S. R.
Becker
,
P. H.
Poole
,
F. W.
Starr
, and
H. E.
Stanley
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
9575
(
2007
).
32.
H. L.
Pi
,
J. L.
Aragones
,
C.
Vega
,
E. G.
Noya
,
J. L. F.
Abascal
,
M. A.
Gonzalez
, and
C.
McBride
,
Mol. Phys.
107
,
365
(
2009
).
33.
G. S.
Grest
and
S. R.
Nagel
,
J. Phys. Chem.
91
,
4916
(
1987
).
35.
J. K.
Nielsen
and
J. C.
Dyre
,
Phys. Rev. B
54
,
15754
(
1996
).
36.
J. K.
Nielsen
,
Phys. Rev. E
60
,
471
(
1999
).
37.
P.
Sceidler
,
W.
Kob
,
A.
Latz
,
J.
Horbach
, and
K.
Binder
,
Phys. Rev. B
63
,
104204
(
2001
).
38.
D.
Chakrabarti
and
B.
Bagchi
,
J. Chem. Phys.
122
,
014501
(
2005
).
39.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
,
Oxford
,
1987
).
40.
J. L. F.
Abascal
and
C.
Vega
,
J. Chem. Phys.
123
,
234505
(
2005
).
41.
D.
Eisenberg
and
W.
Kauzmann
,
The Structures and Properties of Water
(
Oxford University Press
,
New York
,
1969
).
42.
R.
Bohmer
,
K. L.
Ngai
,
C. A.
Angell
, and
D. J.
Plazek
,
J. Chem. Phys.
99
,
4201
(
1993
).
43.
S. M.
Bhattacharyya
,
B.
Bagchi
, and
P. G.
Wolynes
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
16077
(
2008
).
44.
J. R.
Errington
and
P. G.
Debenedetti
,
Nature (London)
409
,
318
(
2001
).
45.
P.
Kumar
,
S. V.
Buldyrev
, and
H. E.
Stanley
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
22130
(
2009
).
46.
A.
Bizid
,
L.
Bosio
,
A.
Defrain
, and
M.
Oumezzine
,
J. Chem. Phys.
87
,
2225
(
1987
).
47.
S. M.
Bhattacharyya
,
B.
Bagchi
, and
P. G.
Wolynes
,
J. Chem. Phys.
132
,
104503
(
2010
).
48.
V.
Velikov
,
S.
Borick
, and
C. A.
Angell
,
Science
294
,
2335
(
2001
).
50.
Y. Z.
Yue
and
C. A.
Angell
,
Nature (London)
427
,
717
(
2004
).
51.
N.
Giovambattista
,
C. A.
Angell
,
F.
Sciortino
, and
H. E.
Stanley
,
Phys. Rev. Lett.
93
,
047801
(
2004
).
52.
N.
Giovambattista
,
C. A.
Angell
,
F.
Sciortino
, and
H. E.
Stanley
,
Phys. Rev. E
72
,
011203
(
2005
).
53.
P.
Gallo
and
M.
Rovere
,
J. Chem. Phys.
137
,
164503
(
2012
).
54.
Y.
Zhang
,
M.
Lagi
,
E.
Fratini
,
P.
Baglioni
,
E.
Mamontov
, and
S. H.
Chen
,
Phys. Rev. E
79
,
040201
R
(
2009
).
55.
C.
Dasgupta
,
A. V.
Indrani
,
S.
Ramaswamy
, and
M. K.
Phani
,
Europhys. Lett.
15
,
307
(
1991
).
56.
S. C.
Glotzer
,
V. N.
Novikov
, and
T. B.
Schroder
,
J. Chem. Phys.
112
,
509
(
2000
).
57.
S.
Franz
and
G.
Parisi
,
J. Phys.: Condens. Matter
12
,
6335
(
2000
).
58.
C.
Toninelli
,
M.
Wyart
,
L.
Berthier
,
G.
Biroli
, and
J. P.
Bouchaud
,
Phys. Rev. E
71
,
041505
(
2005
).
59.
B.
Jana
and
B.
Bagchi
,
J. Phys. Chem. B
113
,
2221
2224
(
2009
).
60.
T. R.
Kirkpatrick
and
D.
Thirumalai
,
Phys. Rev. A
37
,
4439
(
1988
).
61.
A.
Heuer
,
M.
Wilhelm
,
H.
Zimmermann
, and
H. W.
Spiess
,
Phys. Rev. Lett.
75
,
2851
(
1995
).
62.
E.
Flenner
and
G.
Szamel
,
Phys. Rev. E
70
,
052501
(
2004
).
63.
K.
Kim
and
S.
Saito
,
Phys. Rev. E
79
,
060501
R
(
2009
).
64.
K.
Kim
and
S.
Saito
,
J. Chem. Phys.
138
,
12A506
(
2013
).
65.
See supplementary material at http://dx.doi.org/10.1063/1.4793555 for temperature dependence of liquid structure, volumes of Voronoi polyhedra, tetrahedralities, and static structure factors under constant pressure and volume conditions.

Supplementary Material

You do not currently have access to this content.