We employed an explicit expression for the dispersion (D) energy in conjunction with Kohn-Sham (KS) density functional theory and frozen-density embedding (FDE) to calculate interaction energies between DNA base pairs and a selected set of amino acid pairs in the hydrophobic core of a small protein Rubredoxin. We use this data to assess the accuracy of an FDE-D approach for the calculation of intermolecular interactions. To better analyze the calculated interaction energies we furthermore propose a new energy decomposition scheme that is similar to the well-known KS bond formation analysis [F. M. Bickelhaupt and E. J. Baerends, Rev. Comput. Chem.15, 1 (2000)

], but differs in the electron densities used to define the bond energy. The individual subsystem electron densities of the FDE approach sum to the total electron density which makes it possible to define bond energies in terms of promotion energies and an explicit interaction energy. We show that for the systems considered only a few freeze-and-thaw cycles suffice to reach convergence in these individual bond energy components, illustrating the potential of FDE-D as an efficient method to calculate intermolecular interactions.

1.
P.
Hobza
,
R.
Zahradnik
, and
K.
Muller-Dethlefs
,
Collect. Czech. Chem. Commun.
71
,
443
(
2006
).
2.
B.
Brutschy
and
P.
Hobza
,
Chem. Rev.
100
,
3861
(
2000
).
3.
S.
Tsuzuki
and
T.
Uchimaru
,
Curr. Org. Chem.
10
,
745
(
2006
).
4.
S.
Tsuzuki
,
Struct. Bonding
115
,
149
(
2005
).
5.
M. O.
Sinnokrot
,
E. F.
Valeev
, and
C. D.
Sherrill
,
J. Am. Chem. Soc.
124
,
10887
(
2002
).
6.
M. O.
Sinnokrot
and
C. D.
Sherrill
,
J. Phys. Chem. A
108
,
10200
(
2004
).
7.
P.
Hobza
and
J.
Šponer
,
J. Am. Chem. Soc.
124
,
11802
(
2002
).
8.
M. L.
Leininger
,
I. M. B.
Nielsen
,
M. E.
Colvin
, and
C. L.
Janssen
,
J. Phys. Chem. A
106
,
3850
(
2002
).
9.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
Oxford
,
1989
).
10.
J.
Černy
and
P.
Hobza
,
Phys. Chem. Chem. Phys.
7
,
1624
(
2005
).
11.
M. J.
Allen
and
D. J.
Tozer
,
J. Chem. Phys.
117
,
11113
(
2002
).
12.
P.
Hobza
,
J.
Šponer
, and
T.
Reschel
,
J. Comput. Chem.
16
,
1315
(
1995
).
13.
S.
Kristiyan
and
P.
Pulay
,
Chem. Phys. Lett.
229
,
175
(
1994
).
14.
Y.
Andersson
,
D. C.
Langreth
, and
B. I.
Lundqvist
,
Phys. Rev. Lett.
76
,
102
(
1996
).
15.
D. C.
Langreth
,
M.
Dion
,
H.
Rydberg
,
E.
Schroder
, and
B. I. L. P.
Hyldgaard
,
Int. J. Quantum Chem.
101
,
599
(
2005
).
16.
S.
Grimme
,
J.
Antony
,
T.
Schwabe
, and
C.
Mueck-Lichtenfeld
,
Org. Biomol. Chem.
5
,
741
(
2007
).
17.
J.
Gräfenstein
and
D.
Cremer
,
J. Chem. Phys.
130
,
124105
(
2009
).
18.
E. R.
Johnson
,
I. D.
Mackie
, and
G. A.
DiLabio
,
J. Phys. Org. Chem.
22
,
1127
(
2009
).
19.
T.
Sato
and
H.
Nakai
,
J. Chem. Phys.
131
,
224104
(
2009
).
20.
C. D.
Sherrill
, “
Energy Component Analysis of π Interactions
,”
Acc. Chem. Res.
(published online).
21.
G.
Jansen
and
A.
Heßelmann
,
J. Phys. Chem. A
105
,
11156
(
2001
).
22.
M.
Elstner
,
P.
Hobza
,
T.
Frauenheim
,
S.
Suhai
, and
E.
Kaxiras
,
J. Chem. Phys.
114
,
5149
(
2001
).
23.
S.
Grimme
,
J. Comput. Chem.
25
,
1463
(
2004
).
24.
P.
Jurečka
,
J.
Cerny
,
P.
Hobza
, and
D. R.
Salahub
,
J. Comput. Chem.
28
,
555
(
2007
).
25.
T.
Sato
,
T.
Tsuneda
, and
K.
Hirao
,
Mol. Phys.
103
,
1151
(
2005
).
26.
O. A.
von Lilienfeld
,
I.
Tavernelli
,
U.
Rothlisberger
, and
D.
Sebastiani
,
Phys. Rev. Lett.
93
,
153004
(
2004
).
27.
Y. Y.
Sun
,
Y.-H.
Kim
,
K.
Lee
, and
S. B.
Zhang
,
J. Chem. Phys.
129
,
154102
(
2008
).
28.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
29.
A.
Tkatchenko
and
M.
Scheffler
,
Phys. Rev. Lett.
102
,
073005
(
2009
).
30.
E.
Bodo
,
F. A.
Gianturco
,
R.
Martinazzo
,
F.
Paesani
, and
M.
Raimondi
,
J. Chem. Phys.
113
,
11071
(
2000
).
31.
X.
Wu
,
M. C.
Vargas
,
S.
Nayak
,
V.
Lotrich
, and
G.
Scoles
,
J. Chem. Phys.
115
,
8748
(
2001
).
32.
U.
Zimmerli
,
M.
Parrinello
, and
P.
Koumoutsakos
,
J. Chem. Phys.
120
,
2693
(
2004
).
33.
G.
Murdachaew
,
S.
de Gironcoli
, and
G.
Scoles
,
J. Phys. Chem. A
112
,
9993
(
2008
).
34.
S. N.
Steinmann
,
G.
Csonka
, and
C.
Corminboeuf
,
J. Chem. Theory Comput.
5
,
2950
(
2009
).
35.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
36.
J.
Antony
and
S.
Grimme
,
Phys. Chem. Chem. Phys.
8
,
5287
(
2006
).
37.
A.
Warshel
and
M.
Levitt
,
J. Mol. Biol.
103
,
227
(
1976
).
38.
F.
Maseras
and
K.
Morokuma
,
J. Comput. Chem.
16
,
1170
(
1995
).
39.
K.
Kitaura
,
Chem. Phys. Lett.
313
,
701
(
1999
).
40.
D. W.
Zhang
and
J. Z. H.
Zhang
,
J. Chem. Phys.
119
,
3599
(
2003
).
41.
R. P. A.
Bettens
and
A. M.
Lee
,
J. Phys. Chem. A
110
,
8777
(
2006
).
42.
H. M.
Senn
and
W.
Thiel
,
Angew. Chem.
48
,
1198
(
2009
).
43.
T. A.
Wesolowski
and
A.
Warshel
,
J. Phys. Chem.
97
,
8050
(
1993
).
44.
J.
Neugebauer
,
M. J.
Louwerse
,
E. J.
Baerends
, and
T. A.
Wesolowski
,
J. Chem. Phys.
122
,
094115
(
2005
).
45.
C. R.
Jacob
,
J.
Neugebauer
,
L.
Jensen
, and
L.
Visscher
,
Phys. Chem. Chem. Phys.
8
,
2349
(
2006
).
46.
R. E.
Bulo
,
C. R.
Jacob
, and
L.
Visscher
,
J. Phys. Chem. A
112
,
2640
(
2008
).
47.
M. E.
Casida
and
T. A.
Wesolowski
,
Int. J. Quantum Chem.
96
,
577
(
2004
).
48.
J.
Neugebauer
,
J. Chem. Phys.
126
,
134116
(
2007
).
49.
M.
Zbiri
,
M.
Atanasov
,
C.
Daul
,
J. M.
Garcia-Lastra
, and
T. A.
Wesolowski
,
Chem. Phys. Lett.
397
,
441
(
2004
).
50.
J.
Neugebauer
,
C. R.
Jacob
,
T. A.
Wesolowski
, and
E. J.
Baerends
,
J. Phys. Chem. A
109
,
7805
(
2005
).
51.
J.
Neugebauer
,
J. Phys. Chem. B
112
,
2207
(
2008
).
52.
A. S. P.
Gomes
,
C. R.
Jacob
, and
L.
Visscher
,
Phys. Chem. Chem. Phys.
10
,
5353
(
2008
).
53.
M.
Dulak
and
T. A.
Wesolowski
,
Int. J. Quantum Chem.
101
,
543
(
2005
).
54.
T. A.
Wesolowski
,
Y.
Ellinger
, and
J.
Weber
,
J. Chem. Phys.
108
,
6078
(
1998
).
55.
T. A.
Wesolowski
,
J. Chem. Phys.
106
,
8516
(
1997
).
56.
A. W.
Götz
,
S. M.
Beyhan
, and
L.
Visscher
,
J. Chem. Theory Comput.
5
,
3161
(
2009
).
57.
D. G.
Fedorov
and
K.
Kitaura
,
J. Phys. Chem. A
116
,
704
(
2012
).
58.
P.
Su
,
H.
Liu
, and
W.
Wu
,
J. Chem. Phys.
137
,
034111
(
2012
).
59.
T.
Nagata
,
D. G.
Fedorov
,
T.
Sawada
, and
K.
Kitaura
,
J. Phys. Chem. A
116
,
9088
(
2012
).
60.
P.
Elliott
,
M. H.
Cohen
,
A.
Wasserman
, and
K.
Burke
,
J. Chem. Theory Comput.
5
,
827
(
2009
).
61.
J.
Nafziger
,
Q.
Wu
, and
A.
Wasserman
,
J. Chem. Phys.
135
,
234101
(
2011
).
62.
N.
Govind
,
Y.
Wang
, and
E. A.
Carter
,
J. Chem. Phys.
110
,
7677
(
1999
).
63.
C. R.
Jacob
and
L.
Visscher
,
J. Chem. Phys.
128
,
155102
(
2008
).
64.
D. G.
Fedorov
and
K.
Kitaura
,
J. Comput. Chem.
28
,
222
(
2006
).
65.
P.
Su
and
H.
Li
,
J. Chem. Phys.
131
,
014102
(
2009
).
66.
67.
T. A.
Wesolowski
, in
Computational Chemistry: Reviews of Current Trends
, edited by
J.
Leszczynski
(
World Scientific
,
Singapore
,
2006
), Vol.
10
.
68.
K.
Kiewisch
,
G.
Eickerling
,
M.
Reiher
, and
J.
Neugebauer
,
J. Chem. Phys.
128
,
044114
(
2008
).
69.
T. A.
Wesolowski
and
J.
Weber
,
Chem. Phys. Lett.
248
,
71
(
1996
).
70.
M.
Dulak
,
J. W.
Kaminski
, and
T. A.
Wesolowski
,
J. Chem. Theory Comput.
3
,
735
(
2007
).
71.
S.
Fux
,
K.
Kiewisch
,
C. R.
Jacob
,
J.
Neugebauer
, and
M.
Reiher
,
Chem. Phys. Lett.
461
,
353
(
2008
).
72.
S. M.
Beyhan
,
A. W.
Götz
,
C. R.
Jacob
, and
L.
Visscher
,
J. Chem. Phys.
132
,
044114
(
2010
).
73.
C. R.
Jacob
,
T. A.
Wesolowski
, and
L.
Visscher
,
J. Chem. Phys.
123
,
174104
(
2005
).
74.
R.
Kevorkyants
,
M.
Dulak
, and
T. A.
Wesolowski
,
J. Chem. Phys.
124
,
024104
(
2006
).
75.
F.
Tran
,
J.
Weber
, and
T. A.
Wesolowski
,
Helv. Chim. Acta
84
,
1489
(
2001
).
76.
M.
Dulak
and
T. A.
Wesolowski
,
J. Mol. Model.
13
,
631
(
2007
).
77.
H. C.
Chow
and
S. H.
Vosko
,
Can. J. Phys.
58
,
497
(
1980
).
78.
L. H.
Thomas
,
Proc. Cambridge Philos. Soc.
23
,
542
(
1927
).
79.
E.
Fermi
,
Rend. Accad. Naz. Lincei
6
,
602
(
1927
).
80.
J. P.
Perdew
,
J.
Chevary
,
S.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
).
81.
A.
Lembarki
and
H.
Chermette
,
Phys. Rev. A
50
,
5328
(
1994
).
82.
T. A.
Wesolowski
,
H.
Chermette
, and
J.
Weber
,
J. Chem. Phys.
105
,
9182
(
1996
).
83.
K.
Kitaura
and
K.
Morokuma
,
Int. J. Quantum Chem.
10
,
325
(
1976
).
84.
T.
Ziegler
and
A.
Rauk
,
Theor. Chim. Acta
46
,
1
(
1977
).
85.
F. M.
Bickelhaupt
and
E. J.
Baerends
,
Rev. Comput. Chem.
15
,
1
(
2000
).
86.
W.
Chen
and
M. S.
Gordon
,
J. Phys. Chem.
100
,
14316
(
1996
).
87.
T. A.
Wesolowski
,
P. Y.
Morgantini
, and
J.
Weber
,
J. Chem. Phys.
116
,
6411
(
2002
).
88.
F. R.
Manby
,
M.
Stella
,
J. D.
Goodpaster
, and
T. F.
Miller
,
J. Chem. Theory Comput.
8
,
2564
(
2012
).
89.
Note that we will use the term “bond energy” to denote the sum of promotion and interaction energies even though the systems considered in this work are not always considered “bonded” in conventional nomenclature.
90.
Y.
Zhao
and
D. G.
Truhlar
,
Phys. Chem. Chem. Phys.
7
,
2701
(
2005
).
91.
J.
Vondrášek
,
L.
Bendová
,
V.
Klusák
, and
P.
Hobza
,
J. Am. Chem. Soc.
127
,
2615
(
2005
).
92.
K.
Berka
,
P.
Hobza
, and
J.
Vondrášek
,
Comput. Phys. Commun.
10
,
543
(
2009
).
93.
“ADF2009.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands; see http://www.scm.com, accessed in November 2009,” (
2009
).
94.
C. F.
Guerra
,
J.
Snijders
,
G.
te Velde
, and
E. J.
Baerends
,
Theor. Chem. Acc.
99
,
391
(
1998
).
95.
G.
te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C. F.
Guerra
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
T.
Ziegler
,
J. Comput. Chem.
22
,
931
(
2001
).
96.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
97.
C. T.
Lee
,
W. T.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
98.
B. G.
Johnson
,
P. M. W.
Gill
, and
J. A.
Pople
,
J. Chem. Phys.
98
,
5612
(
1993
).
99.
T. V.
Russo
,
R. L.
Martin
, and
P. J.
Hay
,
J. Chem. Phys.
101
,
7729
(
1994
).
100.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
101.
C. R.
Jacob
,
S. M.
Beyhan
,
R. E.
Bulo
,
A. S. P.
Gomes
,
A. W.
Götz
,
K.
Kiewisch
,
J.
Sikkema
, and
L.
Visscher
,
J. Comput. Chem.
32
,
2328
(
2011
).
102.
G.
van Rossum
and
J.
de Boer
,
Interactively Testing Remote Servers Using the Python Programming Language
(
CWI Quarterly
,
Amsterdam
,
1991
), Vol.
4
, pp.
283
303
.
103.
F.
Tran
and
T. A.
Wesolowski
,
Int. J. Quantum. Chem.
89
,
441
(
2002
).
104.
C. R.
Jacob
,
S. M.
Beyhan
, and
L.
Visscher
,
J. Chem. Phys.
126
,
234116
(
2007
).
105.
P.
Jurečka
and
P.
Hobza
,
J. Am. Chem. Soc.
125
,
15608
(
2003
).
106.
P.
Jurečka
,
J.
Šponer
, and
P.
Hobza
,
J. Phys. Chem. B
108
,
5466
(
2004
).
107.
J.
Šponer
,
P.
Jurečka
, and
P.
Hobza
,
J. Am. Chem. Soc.
126
,
10142
(
2004
).
You do not currently have access to this content.