Orientational restraints can improve the efficiency of alchemical free energy calculations, but they are not typically applied in relative binding calculations, which compute the affinity difference been two ligands. Here, we describe a new “separated topologies” method, which computes relative binding free energies using orientational restraints and which has several advantages over existing methods. While standard approaches maintain the initial and final ligand in a shared orientation, the separated topologies approach allows the initial and final ligands to have distinct orientations. This avoids a slowly converging reorientation step in the calculation. The separated topologies approach can also be applied to determine the relative free energies of multiple orientations of the same ligand. We illustrate the approach by calculating the relative binding free energies of two compounds to an engineered site in Cytochrome C Peroxidase.

1.
D. L.
Mobley
and
P. V.
Klimovich
,
J. Chem. Phys.
137
,
230901
(
2012
).
2.
J. D.
Chodera
,
D. L.
Mobley
,
M. R.
Shirts
,
R. W.
Dixon
,
K.
Branson
, and
V. S.
Pande
,
Curr. Opin. Struct. Biol.
21
,
150
(
2011
).
3.
J.
Michel
and
J. W.
Essex
,
J. Comput.-Aided Mol. Des.
24
,
639
(
2010
).
4.
C. F.
Wong
and
J. A.
McCammon
,
J. Am. Chem. Soc.
108
,
3830
(
1986
).
5.
S.
Miyamoto
and
P. A.
Kollman
,
Proteins
16
,
226
(
1993
).
6.
J. W.
Essex
,
D. L.
Severance
,
J.
Tirado-Rives
, and
W. L.
Jorgensen
,
J. Phys. Chem. B
101
,
9663
(
1997
).
7.
T.
Fox
,
T. S.
Scanlan
, and
P. A.
Kollman
,
J. Am. Chem. Soc.
119
,
11571
(
1997
).
8.
M. L.
Plount Price
and
W. L.
Jorgensen
,
J. Am. Chem. Soc.
122
,
9455
(
2000
).
9.
B. C.
Oostenbrink
,
J. W.
Pitera
,
M. M. H.
van Lipzig
,
J. H. N.
Meerman
, and
W. F.
van Gunsteren
,
J. Med. Chem.
43
,
4594
(
2000
).
10.
A.
Aleksandrov
and
T.
Simonson
,
Biochemistry
47
,
13594
(
2008
).
11.
D.
Jiao
,
J.
Zhang
,
R. E.
Duke
,
G.
Li
,
M. J.
Schnieders
, and
P.
Ren
,
J. Comput. Chem.
30
,
1701
(
2009
).
12.
S. E.
Boyce
,
D. L.
Mobley
,
G. J.
Rocklin
,
A. P.
Graves
,
K. A.
Dill
, and
B. K.
Shoichet
,
J. Mol. Biol.
394
,
747
(
2009
).
13.
L.
Wang
,
B. J.
Berne
, and
R. A.
Friesner
,
PNAS
109
,
1937
(
2012
).
14.
J.
Michel
,
M. L.
Verdonk
, and
J. W.
Essex
,
J. Chem. Theory Comput.
3
,
1645
(
2007
).
15.
J.
Michel
and
J. W.
Essex
,
J. Med. Chem.
51
,
6654
(
2008
).
16.
S.
Riniker
,
C. D.
Christ
,
N.
Hansen
,
A. E.
Mark
,
P. C.
Nair
, and
W. F.
van Gunsteren
,
J. Chem. Phys.
135
,
024105
(
2011
).
17.
S.
Banba
and
C. L.
Brooks
,
J. Chem. Phys.
113
,
3423
(
2000
).
18.
S.
Banba
,
Z.
Guo
, and
C. L.
Brooks
,
J. Phys. Chem. B
104
,
6903
(
2000
).
19.
D. L.
Mobley
and
P.
Klimovich
,
J. Chem. Phys.
137
,
230901
(
2012
).
20.
C. J.
Woods
,
J. W.
Essex
, and
M. A.
King
,
J. Phys. Chem. B
107
,
13703
(
2003
).
21.
Y.
Sugita
,
A.
Kitao
, and
Y.
Okamoto
,
J. Chem. Phys.
113
,
6042
(
2000
).
22.
S.
Boresch
,
F.
Tettinger
,
M.
Leitgeb
, and
M.
Karplus
,
J. Phys. Chem. B
107
,
9535
(
2003
).
23.
D. L.
Mobley
,
A. P.
Graves
,
J. D.
Chodera
,
A. C.
McReynolds
,
B. K.
Shoichet
, and
K. A.
Dill
,
J. Mol. Biol.
371
,
1118
(
2007
).
24.
J.
Wang
,
Y.
Deng
, and
B.
Roux
,
Biophys. J.
91
,
2798
(
2006
).
25.
C. H.
Bennett
,
J. Comput. Phys.
22
,
245
(
1976
).
26.
M. R.
Shirts
and
J. D.
Chodera
,
J. Chem. Phys.
129
,
124105
(
2008
).
27.
D. L.
Mobley
,
J. D.
Chodera
, and
K. A.
Dill
,
J. Chem. Phys.
125
,
084902
(
2006
).
28.
R.
Rosenfeld
,
A.
Hays
,
R.
Musah
, and
D.
Goodin
,
Protein Sci.
11
,
1251
(
2002
).
29.
P.
Nuno Palma
,
M.
João Bonifácio
,
A.
Isabel Loureiro
, and
P.
Soares-da-Silva
,
J. Comput. Chem.
33
,
970
986
(
2012
).
30.
See supplementary material at http://dx.doi.org/10.1063/1.4792251 for convergence plots for all alchemical steps.
31.
M. R.
Shirts
and
V. S.
Pande
,
J. Chem. Phys.
122
,
144107
(
2005
).
32.
D. L.
Mobley
,
É.
Dumont
,
J. D.
Chodera
, and
K. A.
Dill
,
J. Phys. Chem. B
111
,
2242
(
2007
).
33.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
(
2008
).
34.
V.
Hornak
,
R.
Abel
,
A.
Okur
,
B.
Strockbine
,
A.
Roitberg
, and
C.
Simmerling
,
Proteins
65
,
712
(
2006
).
35.
J.
Wang
,
W.
Wang
,
P. A.
Kollman
, and
D. A.
Case
,
J. Mol. Graphics Modell.
25
,
247
(
2006
).
36.
A.
Jakalian
,
D. B.
Jack
, and
C. I.
Bayly
,
J. Comput. Chem.
23
,
1623
(
2002
).
37.
A.
Jakalian
,
B. L.
Bush
,
D. B.
Jack
, and
C. I.
Bayly
,
J. Comput. Chem.
21
,
132
(
2000
).
38.
L.
Banci
,
P.
Carloni
, and
G. G.
Savellini
,
Biochemistry
33
,
12356
(
1994
).
39.
E. G.
Alexov
and
M. R.
Gunner
,
Biophys. J.
72
,
2075
(
1997
).
40.
R. E.
Georgescu
,
E. G.
Alexov
, and
M. R.
Gunner
,
Biophys. J.
83
,
1731
(
2002
).

Supplementary Material

You do not currently have access to this content.