The transport properties in the dilute gas limit have been calculated by the classical-trajectory method for a gas consisting of chain-like molecules. The molecules were modelled as rigid chains consisting of spherical segments that interact through a combination of site-site Lennard-Jones 12-6 potentials. Results are reported for shear viscosity, self-diffusion, and thermal conductivity for chains consisting of 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, and 16 segments in the reduced temperature range of 0.3 − 50. The results indicate that the transport properties increase with temperature and decrease with chain length. At high temperatures the dependence of the transport properties is governed effectively by the repulsive part of the potential. No simple scaling with chain length has been observed. The higher order correction factors are larger than observed for real molecules so far, reaching asymptotic values of 1.019 − 1.033 and 1.060 − 1.072 for viscosity and thermal conductivity, respectively. The dominant contribution comes from the angular momentum coupling. The agreement with molecular dynamics calculations for viscosity is within the estimated accuracy of the two methods for shorter chains. However, for longer chains differences of up to 7% are observed.

1.
F. R. W.
McCourt
,
J. J. M.
Beenakker
,
W. E.
Köhler
, and
I.
Kuščer
,
Nonequilibrium Phenomena in Polyatomic Gases
(
Oxford Science
,
1990
), Vol.
1
.
2.
S.
Chapman
and
T. G.
Cowling
,
The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases
(
Cambridge University Press
,
1991
).
3.
F. B.
Pidduck
,
Proc. R. Soc. London, Ser. A
101
,
101
(
1922
).
4.
J. H.
Jeans
,
Philos. Trans. R. Soc. London, Ser. A
196
,
397
(
1901
).
5.
J. S.
Dahler
,
J. Chem. Phys.
30
,
1447
(
1959
).
6.
J. S.
Dahler
and
N. F.
Sather
,
J. Chem. Phys.
38
,
2363
(
1963
).
7.
S. I.
Sandler
and
J. S.
Dahler
,
J. Chem. Phys.
43
,
1750
(
1965
).
8.
C. F.
Curtiss
and
C.
Muckenfuss
,
J. Chem. Phys.
26
,
1619
(
1957
).
9.
C.
Muckenfuss
and
C. F.
Curtiss
,
J. Chem. Phys.
29
,
1257
(
1958
).
10.
P. M.
Livingston
and
C. F.
Curtiss
,
J. Chem. Phys.
31
,
1643
(
1959
).
11.
S. I.
Sandler
and
J. S.
Dahler
,
J. Chem. Phys.
44
,
1229
(
1966
).
12.
R.
Hellmann
, “
Ab initio potential energy surface for the nitrogen molecule pair and thermophysical properties of nitrogen gas
,”
Mol. Phys.
(in press).
13.
E. L.
Heck
and
A. S.
Dickinson
,
Physica A
217
,
107
(
1995
).
14.
S.
Bock
,
E.
Bich
,
E.
Vogel
,
A. S.
Dickinson
, and
V.
Vesovic
,
J. Chem. Phys.
117
,
2151
(
2002
).
15.
S.
Bock
,
E.
Bich
,
E.
Vogel
,
A. S.
Dickinson
, and
V.
Vesovic
,
J. Chem. Phys.
120
,
7987
(
2004
).
16.
S.
Bock
,
E.
Bich
,
E.
Vogel
,
A. S.
Dickinson
, and
V.
Vesovic
,
J. Chem. Phys.
121
,
4117
(
2004
).
17.
R.
Hellmann
,
E.
Bich
,
E.
Vogel
,
A. S.
Dickinson
, and
V.
Vesovic
,
J. Chem. Phys.
129
,
064302
(
2008
).
18.
R.
Hellmann
,
E.
Bich
,
E.
Vogel
,
A. S.
Dickinson
, and
V.
Vesovic
,
J. Chem. Phys.
130
,
124309
(
2009
).
19.
R.
Hellmann
,
E.
Bich
,
E.
Vogel
,
A. S.
Dickinson
, and
V.
Vesovic
,
J. Chem. Phys.
131
,
014303
(
2009
).
20.
R.
Hellmann
,
E.
Bich
,
E.
Vogel
, and
V.
Vesovic
,
Phys. Chem. Chem. Phys.
13
,
13749
(
2011
).
21.
G.
Galliéro
,
Fluid Phase Equilib.
224
,
13
(
2004
).
22.
G.
Galliéro
,
C.
Boned
, and
A.
Baylaucq
,
Ind. Eng. Chem. Res.
44
,
6963
(
2005
).
23.
G.
Galliéro
,
M.
Bugel
,
B.
Duguay
, and
F.
Montel
,
J. Non-Equilib. Thermodyn.
32
,
251
(
2007
).
24.
M.
Bugel
and
G.
Galliéro
,
Chem. Phys.
352
,
249
(
2008
).
25.
G.
Galliéro
,
C.
Boned
,
A.
Baylaucq
, and
F.
Montel
,
Phys. Rev. E
73
,
061201
(
2006
).
26.
G.
Galliéro
,
C.
Boned
,
A.
Baylaucq
, and
F.
Montel
,
Chem. Phys.
333
,
219
(
2007
).
27.
G.
Galliéro
,
T.
Lafitte
,
D.
Bessiéres
, and
C.
Boned
,
J. Chem. Phys.
127
,
184506
(
2007
).
28.
G.
Galliéro
and
C.
Boned
,
J. Chem. Phys.
129
,
074506
(
2008
).
29.
G.
Galliéro
,
M. M.
Piñeiro
,
B.
Mendiboure
,
C.
Miqueu
,
T.
Lafitte
, and
D.
Bessiéres
,
J. Chem. Phys.
130
,
104704
(
2009
).
30.
G.
Galliéro
,
C.
Nieto-Draghi
,
C.
Boned
,
J. B.
Avalos
,
A. D.
Mackie
,
A.
Baylaucq
, and
F.
Montel
,
Ind. Eng. Chem. Res.
46
,
5238
(
2007
).
31.
G.
Galliéro
and
C.
Boned
,
Fluid Phase Equilib.
269
,
19
(
2008
).
32.
G.
Galliéro
and
C.
Boned
,
Phys. Rev. E
79
,
021201
(
2009
).
33.
G.
Galliéro
and
C.
Boned
,
Phys. Rev. E
80
,
061202
(
2009
).
34.
G.
Galliéro
,
J. Chem. Phys.
133
,
074705
(
2010
).
35.
S.
Delage Santacreu
,
G.
Galliéro
,
M.
Odunlami
, and
C.
Boned
,
J. Chem. Phys.
137
,
204306
(
2012
).
36.
T. K.
Patra
,
A.
Hens
, and
J. K.
Singh
,
J. Chem. Phys.
137
,
084701
(
2012
).
37.
Y.-X.
Yu
and
G.-H.
Gao
,
Fluid Phase Equilib.
166
,
111
(
1999
).
38.
Y.-X.
Yu
and
G.-H.
Gao
,
Int. J. Thermophys.
21
,
57
(
2000
).
39.
Y.-X.
Yu
and
G.-H.
Gao
,
Fluid Phase Equilib.
179
,
165
(
2001
).
40.
X.-G.
Zhang
and
Y.-X.
Yu
,
Fluid Phase Equilib.
295
,
237
(
2010
).
41.
J. H.
Ferziger
and
H. G.
Kaper
,
Mathematical Theory of Transport Processes in Gases
(
North-Holland
,
Amsterdam
,
1972
).
42.
Y.
Kagan
and
L.
Maksimov
,
Sov. Phys. JETP
14
,
604
(
1962
).
43.
L. A.
Viehland
,
E. A.
Mason
, and
S. I.
Sandler
,
J. Chem. Phys.
68
,
5277
(
1978
).
44.
G. C.
Maitland
,
M.
Mustafa
, and
W. A.
Wakeham
,
J. Chem. Soc., Faraday Trans. 2
79
,
1425
(
1983
).
45.
R.
Hellmann
,
E.
Bich
,
E.
Vogel
, and
V.
Vesovic
,
J. Chem. Eng. Data
57
,
1312
(
2012
).
46.
B. J.
Thijsse
,
G. W.
'T Hooft
,
D. A.
Coombe
,
H. F. P.
Knaap
, and
J. J. M.
Beenakker
,
Physica A
98
,
307
(
1979
).
47.
J.
Millat
,
V.
Vesovic
, and
W. A.
Wakeham
,
Physica A
148
,
153
(
1988
).
48.
S.
Hendl
,
J.
Millat
,
V.
Vesovic
,
E.
Vogel
, and
W. A.
Wakeham
,
Int. J. Thermophys.
12
,
999
(
1991
).
49.
E. L.
Heck
and
A. S.
Dickinson
,
Comput. Phys. Commun.
95
,
190
(
1996
).
50.
See supplementary material at http://dx.doi.org/10.1063/1.4793221 for electronic files that contain these tables.
51.
G. C.
Maitland
,
V.
Vesovic
, and
W. A.
Wakeham
,
Mol. Phys.
54
,
287
(
1985
).
52.
G. C.
Maitland
,
V.
Vesovic
, and
W. A.
Wakeham
,
Mol. Phys.
54
,
301
(
1985
).
53.
C.
Avendaño
,
T.
Lafitte
,
A.
Galindo
,
C. S.
Adjiman
,
G.
Jackson
, and
E. A.
Müller
,
J. Phys. Chem. B
115
,
11154
(
2011
).
54.
T.
Lafitte
,
C.
Avendaño
,
V.
Papaioannou
,
A.
Galindo
,
C. S.
Adjiman
,
G.
Jackson
, and
E. A.
Müller
,
Mol. Phys.
110
,
1189
(
2012
).
55.
C.
Avendaño
,
T.
Lafitte
,
A.
Galindo
,
C. S.
Adjiman
,
E. A.
Müller
, and
G.
Jackson
, “
SAFT-γ Force Field for the Simulation of Molecular Fluids: 2. Coarse-Grained Models of Greenhouse Gases, Refrigerants, and Long Alkanes
,”
J. Phys. Chem. B
(unpublished).
56.
A.
Haslam
, personal communication (1 October
2012
).
57.
G.
Galliéro
,
C.
Boned
, and
J.
Fernández
,
J. Chem. Phys.
134
,
064505
(
2011
).
58.
G.
Galliéro
, personal communication (16 November
2012
).
59.
G. C.
Maitland
,
M.
Rigby
,
E. B.
Smith
, and
W. A.
Wakeham
,
Intermolecular Forces: Their Origin and Determination
(
Clarendon
,
Oxford
,
1981
).
60.
V.
Vesovic
,
S.
Bock
,
E.
Bich
,
E.
Vogel
, and
A. S.
Dickinson
,
Chem. Phys. Lett.
377
,
106
(
2003
).
61.
E. L.
Heck
,
A. S.
Dickinson
, and
V.
Vesovic
,
Chem. Phys. Lett.
240
,
151
(
1995
).
62.
E. L.
Heck
,
A. S.
Dickinson
, and
V.
Vesovic
,
Chem. Phys. Lett.
204
,
389
(
1993
).
63.
E. A.
Mason
and
L.
Monchick
,
J. Chem. Phys.
36
,
1622
(
1962
).

Supplementary Material

You do not currently have access to this content.