A direct method (D-ΔMBPT(2)) to calculate second-order ionization potentials (IPs), electron affinities (EAs), and excitation energies is developed. The ΔMBPT(2) method is defined as the correlated extension of the ΔHF method. Energy differences are obtained by integrating the energy derivative with respect to occupation numbers over the appropriate parameter range. This is made possible by writing the second-order energy as a function of the occupation numbers. Relaxation effects are fully included at the SCF level. This is in contrast to linear response theory, which makes the D-ΔMBPT(2) applicable not only to single excited but also higher excited states. We show the relationship of the D-ΔMBPT(2) method for IPs and EAs to a second-order approximation of the effective Fock-space coupled-cluster Hamiltonian and a second-order electron propagator method. We also discuss the connection between the D-ΔMBPT(2) method for excitation energies and the CIS-MP2 method. Finally, as a proof of principle, we apply our method to calculate ionization potentials and excitation energies of some small molecules. For IPs, the ΔMBPT(2) results compare well to the second-order solution of the Dyson equation. For excitation energies, the deviation from equation of motion coupled cluster singles and doubles increases when correlation becomes more important. When using the numerical integration technique, we encounter difficulties that prevented us from reaching the ΔMBPT(2) values. Most importantly, relaxation beyond the Hartree-Fock level is significant and needs to be included in future research.

1.
A.
Szabo
and
N. S.
Ostlund
,
Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
(
Dover
,
1996
).
2.
J. F.
Stanton
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
7029
(
1993
).
3.
R. J.
Bartlett
,
in Modern Electronic Structure Theory
(
World Scientific
,
Singapore
,
1995
).
4.
I.
Lindgren
,
Int. J. Quantum Chem.
14
(
S12
),
33
(
1978
).
5.
M. A.
Haque
and
D.
Mukherjee
,
J. Chem. Phys.
80
,
5058
(
1984
).
6.
J. V.
Ortiz
, “
The electron propagator picture of molecular electronic structure
,” in
Computational Chemistry: Reviews of Current Trends
(
World Scientific
,
Singapore
,
1997
), pp.
1
61
.
7.
A.
Stan
,
N. E.
Dahlen
, and
R.
van Leeuwen
,
J. Chem. Phys.
130
,
114105
(
2009
).
8.
J.
Linderberg
and
Y.
Öhrn
,
Propagators in Quantum Chemistry
, 2nd ed. (
Wiley
,
2004
).
9.
P.
Jørgensen
,
Annu. Rev. Phys. Chem.
26
,
359
(
1975
).
10.
E. K.
Gross
,
J. F.
Dobson
, and
M.
Petersilka
,
Topics in Current Chemistry: Density Functional Theory of Time-Dependent Phenomena
,
Density Functional Theory II
Vol.
181
(
Springer-Verlag
,
Berlin/Heidelberg
,
1996
).
11.
J. B.
Foresman
,
M.
Head-Gordon
, and
J. A.
Pople
,
J. Phys. Chem.
96
,
135
(
1992
).
12.
A.
Beste
,
R. J.
Harrison
, and
T.
Janai
,
J. Chem. Phys.
125
,
074101
(
2006
).
13.
J. G.
Kirkwood
,
J. Chem. Phys.
3
,
300
(
1935
).
14.
R. W.
Zwanzig
,
J. Chem. Phys.
22
,
1420
(
1954
).
15.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
New York
,
1989
).
16.
H. J.
Kim
and
R. G.
Parr
,
J. Chem. Phys.
41
,
2892
(
1964
).
17.
M.
Musial
,
A.
Perera
, and
R. J.
Bartlett
,
J. Chem. Phys.
134
,
114108
(
2011
).
18.
J. C.
Slater
,
Quantum Theory of Molecules and Solids
(
McGraw-Hill
,
New York
,
1974
).
19.
A. R.
Williams
,
R. A.
deGroot
, and
C. B.
Sommers
,
J. Chem. Phys.
63
,
628
(
1975
).
20.
M. E.
McHenry
,
R. C.
O'Handley
, and
K. H.
Johnson
,
Phys. Rev. B
35
,
3555
(
1987
).
21.
P.
Verma
and
R. J.
Bartlett
,
J. Chem. Phys.
137
,
134102
(
2012
).
22.
O.
Goscinski
,
G.
Howat
, and
T.
Åberg
,
J. Phys. B
8
,
11
(
1975
).
23.
O.
Goscinski
,
B. T.
Pickup
, and
G.
Purvis
,
Chem. Phys. Lett.
22
,
167
(
1973
).
24.
R.
Flores-Moreno
,
V. G.
Zakrzewski
, and
J. V.
Ortiz
,
J. Chem. Phys.
127
,
134106
(
2007
).
25.
J.-P.
Blaizot
and
G.
Ripka
,
Quantum Theory of Finite Systems
(
MIT
,
Cambridge/Massachusetts
,
1986
).
26.
K. J. H.
Giesbertz
and
E. J.
Baerends
,
J. Chem. Phys.
132
,
194108
(
2010
).
27.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics, MBPT and Coupled-Cluster Theory
(
Cambridge University Press
,
New York
,
2009
).
28.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
,
J. Chem. Theory Comput.
5
,
786
(
2009
).
29.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L.
Balduz
 Jr.
,
Phys. Rev. Lett.
49
,
1691
(
1982
).
30.
A.
Beste
and
R. J.
Bartlett
,
J. Chem. Phys.
120
,
8395
(
2004
).
31.
A.
Beste
and
R. J.
Bartlett
,
J. Chem. Phys.
123
,
154103
(
2005
).
32.
G. D.
Purvis
and
Y.
Öhrn
,
Chem. Phys. Lett.
33
,
396
(
1975
).
33.
J.
Simons
and
W. D.
Smith
,
J. Chem. Phys.
58
,
4899
(
1973
).
34.
L. S.
Cederbaum
,
Theor. Chim. Acta.
31
,
239
(
1973
).
35.
B. T.
Pickup
and
O.
Goscinski
,
Mol. Phys.
26
,
1013
(
1973
).
36.
M.
Head-Gordon
,
R. J.
Rico
,
M.
Oumi
, and
T. J.
Lee
,
Chem. Phys. Lett.
219
,
21
(
1994
).
37.
For an in depth discussion of size intensivity versus size extensivity see
T.
Shiozaki
,
K.
Hirao
, and
S.
Hirata
,
J. Chem. Phys.
126
,
244106
(
2007
).
38.
S.
Grimme
and
E. I.
Izgorodina
,
Chem. Phys.
305
,
223
(
2004
).
39.
Y. M.
Rhee
and
M.
Head-Gordon
,
J. Phys. Chem. A
111
,
5314
(
2007
).
40.
A.
Hellweg
,
S. A.
Grün
, and
C.
Hättig
,
Phys. Chem. Chem. Phys.
10
,
4119
(
2008
).
41.
N. O. C.
Winter
and
C.
Hättig
,
J. Chem. Phys.
134
,
184101
(
2011
).
42.
M.
Feyereisen
,
G.
Fitzgerald
, and
A.
Komornicki
,
Chem. Phys. Lett.
208
,
359
(
1993
).
43.
J.
Deng
and
P. M. W.
Gill
,
J. Chem. Phys.
134
,
081103
(
2011
).
44.
M.
Valiev
,
E.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T.
Straatsma
,
H.
van Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
,
T.
Windus
 et al.,
Comput. Phys. Commun.
181
,
1477
(
2010
).
45.
T. H.
Dunning
and
P. J.
Harrison
,
in Modern Theoretical Chemistry
(
Plenum
,
New York
,
1977
).
46.
See supplementary material at http://dx.doi.org/10.1063/1.4790626 for basis set dependence, Legendre-Gauss quadrature convergence, and energies and energy derivatives as a function of occupation for
$\bf \rm H_2O$
H2O
, and selected energies and energy derivatives as a function of occupation for
$\rm CH_2O$
CH 2O
and
$\rm NH_3$
NH 3
.
47.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
, et al.,
J. Comput. Chem.
14
,
1347
(
1993
).
48.
J.
Garza
,
J. A.
Nichols
, and
D. A.
Dixon
,
J. Chem. Phys.
113
,
6029
(
2000
).
49.
T. J.
Watson
and
R. J.
Bartlett
,
Chem. Phys. Lett.
555
,
235
(
2013
).
50.
W. L.
Jolly
,
K. D.
Bomben
, and
C. J.
Eyermann
,
At. Data Nucl. Data Tables
31
,
433
(
1984
).
51.
K.
Kimura
,
S.
Katsumata
,
Y.
Achiba
,
T.
Yamazaki
, and
S.
Iwata
,
Handbook of HeI Photoelectron Spectra of Fundamental Organic Molecules. Ionization Energies, Ab Initio Assignments, and Valence Electronic Structure for 200 Molecules
(
Halsted
,
New York
,
1981
).
52.
R. J.
Rico
,
T. J.
Lee
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
218
,
139
(
1994
).
53.
G.
Herzberg
,
Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules
(
Van Nostrand
,
Princeton, NJ
,
1966
).
54.
S. B.
Ben-Shlomo
and
U.
Kaldor
,
J. Chem. Phys.
92
,
3680
(
1990
).
55.
D. C.
Comeau
and
R. J.
Bartlett
,
Chem. Phys. Lett.
207
,
414
(
1993
).

Supplementary Material

You do not currently have access to this content.