It was recently shown that high resolution 14N overtone NMR spectra can be obtained directly under magic angle spinning (MAS) conditions [L. A. O’Dell and C. I. Ratcliffe, Chem. Phys. Lett.514, 168 (2011)] https://doi.org/10.1016/j.cplett.2011.08.030. Preliminary experimental results showed narrowed powder pattern widths, a frequency shift that is dependent on the MAS rate, and an apparent absence of spinning sidebands, observations which appeared to be inconsistent with previous theoretical treatments. Herein, we reproduce these effects using numerically exact simulations that take into account the full nuclear spin Hamiltonian. Under sample spinning, the 14N overtone signal is split into five (0, ±1, ±2) overtone sidebands separated by the spinning frequency. For a powder sample spinning at the magic angle, the +2ωr sideband is dominant while the others show significantly lower signal intensities. The resultant MAS powder patterns show characteristic quadrupolar lineshapes from which the 14N quadrupolar parameters and isotropic chemical shift can be determined. Spinning the sample at other angles is shown to alter both the shapes and relative intensities of the five overtone sidebands, with MAS providing the benefit of averaging dipolar couplings and shielding anisotropy. To demonstrate the advantages of this experimental approach, we present the 14N overtone MAS spectrum obtained from L-histidine, in which powder patterns from all three nitrogen sites are clearly resolved.

1.
L. A.
O’Dell
,
Prog. Nucl. Magn. Reson. Spectrosc.
59
,
295
(
2011
).
2.
S.
Cavadini
,
Prog. Nucl. Magn. Reson. Spectrosc.
56
,
46
(
2010
).
3.
H. J.
Jakobsen
,
H.
Bildsøe
,
J.
Skibsted
, and
T.
Giavani
,
J. Am. Chem. Soc.
123
,
5098
(
2001
).
4.
E. A.
Hill
and
J. P.
Yesinowski
,
J. Am. Chem. Soc.
118
,
6798
(
1996
).
5.
L. A.
O’Dell
and
R. W.
Schurko
,
J. Am. Chem. Soc.
131
,
6658
(
2009
).
6.
M.
Bloom
and
M. A.
LeGros
,
Can. J. Phys.
64
,
1522
(
1986
).
7.
R.
Tycko
and
S. J.
Opella
,
J. Am. Chem. Soc.
108
,
3531
(
1986
).
8.
R.
Tycko
and
S. J.
Opella
,
J. Chem. Phys.
86
,
1761
(
1987
).
9.
L. A.
O’Dell
and
C. I.
Ratcliffe
,
Chem. Phys. Lett.
514
,
168
(
2011
).
10.
E.
Kupče
and
R. J.
Freeman
,
J. Mag. Reson. A
115
,
273
(
1995
).
11.
K.
Takegoshi
and
K.
Hikichi
,
Chem. Phys. Lett.
194
,
359
(
1992
).
12.
L.
Marinelli
,
S.
Wi
, and
L.
Frydman
,
J. Chem. Phys.
110
,
3100
(
1999
).
13.
N. M.
Trease
and
P. J.
Grandinetti
,
J. Chem. Phys.
128
,
052318
(
2008
).
15.
Wolfram Research, Inc., Mathematica, Version 8.0, Champaign, IL,
2011
.
16.
A. C.
Hindmarsh
, “
ODEPACK, A systematized collection of ODE solvers
,” in
Scientific Computing
,
IMACS Transactions on Scientific Computation Vol. 1
, edited by
R. S.
Stepleman
 et al. (
North-Holland
,
Amsterdam
,
1983
), pp.
55
64
.
17.
M.
Bak
and
N. C.
Nielsen
,
J. Magn. Reson.
147
,
296
(
2000
).
18.
M.
Veshtort
and
R. G.
Griffin
,
J. Magn. Reson.
178
,
248
(
2006
).
19.
M.
Edén
,
Y. K.
Lee
, and
M. H.
Levitt
,
J. Magn. Reson. A
120
,
56
(
1996
).
20.
H.
Conroy
,
J. Chem. Phys.
47
,
5307
(
1967
).
21.
See supplementary material at http://dx.doi.org/10.1063/1.4775592 for additional simulations and Mathematica notebook to calculate MAS overtone spectra.
22.
A.
Detken
,
E. H.
Hardy
,
M.
Ernst
, and
B. H.
Meier
,
Chem. Phys. Lett.
356
,
298
(
2002
).
23.
I.
Hung
and
Z.
Gan
,
J. Magn. Reson.
204
,
256
(
2010
).
24.
L. A.
O’Dell
and
R. W.
Schurko
,
Chem. Phys. Lett.
464
,
97
(
2008
).
25.
L. A.
O’Dell
,
R. W.
Schurko
,
K. J.
Harris
,
J.
Autschbach
, and
C. I.
Ratcliffe
,
J. Am. Chem. Soc.
133
,
527
(
2011
).
26.
J. J.
Madden
,
E. L.
McGandy
, and
N. C.
Seeman
,
Acta Crystallogr., Sect. B
28
,
2377
(
1972
).
27.
S. J.
Clark
,
M. D.
Segall
,
C. J.
Pickard
,
P. J.
Hasnip
,
M. J.
Probert
,
K.
Refson
, and
M. C.
Payne
,
Z. Kristallogr.
220
,
567
(
2005
).
28.
S.
Adiga
,
D.
Aebi
, and
D. L.
Bryce
,
Can. J. Chem.
85
,
496
(
2007
).
29.
M. J.
Hunt
,
A. L.
Mackay
, and
D. T.
Edmonds
,
Chem. Phys. Lett.
34
,
473
(
1975
).
30.
L. A.
O’Dell
and
R. W.
Schurko
,
Phys. Chem. Chem. Phys.
11
,
7069
(
2009
).
31.
I.
Schnell
,
Prog. Nucl. Magn. Reson. Spectrosc.
45
,
145
(
2004
).
32.
A.
Llor
and
J.
Virlet
,
Chem. Phys. Lett.
152
,
248
(
1988
).
34.
V.
Vizthum
,
M. A.
Caporini
,
S.
Ulzega
, and
G.
Bodenhausen
,
J. Magn. Reson.
212
,
234
(
2011
).

Supplementary Material

You do not currently have access to this content.