It is well known that internal or molecular noise induces concentration oscillations in chemical systems whose deterministic models exhibit damped oscillations. In this article we show, using the linear-noise approximation of the chemical master equation, that noise can also induce oscillations in systems whose deterministic descriptions admit no damped oscillations, i.e., systems with a stable node. This non-intuitive phenomenon is remarkable since, unlike noise-induced oscillations in systems with damped deterministic oscillations, it cannot be explained by noise excitation of the deterministic resonant frequency of the system. We here prove the following general properties of stable-node noise-induced oscillations for systems with two species: (i) the upper bound of their frequency is given by the geometric mean of the real eigenvalues of the Jacobian of the system, (ii) the upper bound of the Q-factor of the oscillations is inversely proportional to the distance between the real eigenvalues of the Jacobian, and (iii) these oscillations are not necessarily exhibited by all interacting chemical species in the system. The existence and properties of stable-node oscillations are verified by stochastic simulations of the Brusselator, a cascade Brusselator reaction system, and two other simple chemical systems involving auto-catalysis and trimerization. It is also shown how external noise induces stable node oscillations with different properties than those stimulated by internal noise.

1.
A.
Goldbeter
,
Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour
(
Cambridge University Press
,
1996
).
2.
R. E.
Dolmetsch
,
K.
Xu
, and
R. S.
Lewis
,
Nature (London)
392
,
933
(
1998
).
3.
P.
Richard
,
B.
Teusink
,
M. B.
Hemker
,
K.
van Dam
, and
H. V.
Westerhoff
,
Yeast
12
,
731
(
1996
).
5.
J. D.
Murray
,
Mathematical Biology: I. An Introduction
(
Springer
,
2007
).
6.
B.
Novák
and
J. J.
Tyson
,
Nat. Rev. Mol. Cell. Biol.
9
,
981
(
2008
).
7.
T.
Wilhelm
and
R.
Heinrich
,
J. Math. Chem.
17
,
1
(
1995
).
8.
Y.
Ishihama
,
T.
Schmidt
,
J.
Rappsilber
,
M.
Mann
,
F. U.
Hartl
,
M. J.
Kerner
, and
D.
Frishman
,
BMC Genomics
9
,
102
(
2008
).
9.
R.
Grima
and
S.
Schnell
,
Essays Biochem.
45
,
41
(
2008
).
10.
J. M. G.
Vilar
,
H. Y.
Kueh
,
N.
Barkai
, and
S.
Leibler
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
5988
(
2002
).
11.
D.
Gonze
,
J.
Halloy
, and
A.
Goldbeter
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
673
(
2002
).
12.
D. B.
Forger
and
C. S.
Peskin
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
321
(
2005
).
13.
H.
Li
,
Z.
Hou
, and
H.
Xin
,
Phys. Rev. E
71
,
061916
(
2005
).
14.
D. T.
Gillespie
,
J. Phys. Chem.
81
,
2340
(
1977
).
15.
N. G.
van Kampen
,
Stochastic Processes in Physics and Chemistry
(
Elsevier
,
2007
).
16.
A. J.
McKane
,
J. D.
Nagy
,
T. J.
Newman
, and
M. O.
Stefanini
,
J. Stat. Phys.
128
,
165
(
2007
).
17.
T.
Dauxois
,
F.
Di Patti
,
D.
Fanelli
, and
A. J.
McKane
,
Phys. Rev. E
79
,
036112
(
2009
).
18.
R.
Kuske
,
L. F.
Gordillo
, and
P.
Greenwood
,
J. Theor. Biol.
245
,
459
(
2007
).
19.
H.
Qian
and
M.
Qian
,
Phys. Rev. Lett.
84
,
2271
(
2000
).
20.
M.
Scott
,
B.
Ingalls
, and
M.
Kærn
,
Chaos
16
,
026107
(
2006
).
21.
22.
C. W.
Gardiner
,
Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences
(
Springer
,
2004
).
23.
J.
Elf
and
M.
Ehrenberg
,
Genome Res.
13
,
2475
(
2003
).
24.
Note that a degenerate node could be of the star node type whereby the Jacobian has two independent eigenvectors and there is no curvature in the phase space trajectories. This is however a special case appearing when the Jacobian is diagonal and hence when the two species are non-interacting; the power spectrum Eq. (10) does not display a maximum in frequency for this case and hence no NIO either. Thus the only degenerate node case where NIO appear is where the Jacobian is not diagonal, i.e., the case of one independent eigenvector which is also characterized by curved trajectories, as discussed in the main text.
25.
K. L.
Davis
and
M. R.
Roussel
,
FEBS J.
273
,
84
(
2006
).
26.
I.
Prigogine
and
R.
Lefever
,
J. Chem. Phys.
48
,
1695
(
1968
).
27.
R.
Lefever
,
G.
Nicolis
, and
P.
Borckmans
,
J. Chem. Soc., Faraday Trans. I
84
,
1013
(
1988
).
28.
J. J.
Tyson
,
J. Chem. Phys.
58
,
3919
(
1973
).
29.
J. J.
Tyson
and
J. C.
Light
,
J. Chem. Phys.
59
,
4164
(
1973
).
30.
R. T.
Pack
,
R. B.
Walker
, and
B. K.
Kendrick
,
J. Chem. Phys.
109
,
6714
(
1998
).
31.
R. T.
Pack
,
R. B.
Walker
, and
B. K.
Kendrick
,
J. Chem. Phys.
109
,
6701
(
1998
).
32.
R. S.
Berry
,
S. A.
Rice
, and
J.
Ross
,
Physical and Chemical Kinetics
(
Oxford University Press
,
2002
).
33.
P.
Thomas
,
A. V.
Straube
, and
R.
Grima
,
J. Chem. Phys.
135
,
181103
(
2011
).
34.
P.
Thomas
,
A. V.
Straube
, and
R.
Grima
,
BMC Syst. Biol.
6
,
39
(
2012
).
35.
G. B.
Cook
,
P.
Gray
,
D. G.
Knapp
, and
S. K.
Scott
,
J. Phys. Chem.
93
,
2749
(
1989
).
36.
N.
Kellershohn
and
M.
Laurent
,
Biophys. J.
81
,
2517
(
2001
).
37.
J. J.
Tyson
,
Proc. Natl. Acad. Sci. U.S.A.
88
,
7328
(
1991
).
38.
C.
Choudhary
and
M.
Mann
,
Nat. Rev. Mol. Cell Biol.
11
,
427
(
2010
).
39.
M.
Åkerfelt
,
R. I.
Morimoto
, and
L.
Sistonen
,
Nat. Rev. Mol. Cell Biol.
11
,
545
(
2010
).
40.
T.
Shibata
,
Phys. Rev. E
69
,
056218
(
2004
).
41.
R.
Ramaswamy
and
I. F.
Sbalzarini
,
Sci. Rep.
1
,
154
(
2011
).
43.
A. J.
McKane
and
T. J.
Newman
,
Phys. Rev. Lett.
94
,
218102
(
2005
).
44.
F.
Campillo
,
M.
Joannides
, and
I.
Larramendy-Valverde
,
Ecol. Modell.
222
,
2676
(
2011
).
45.
P.
Hanusse
,
Comptes Rendus, Acad. Sci. Paris,(C)
274
,
1245
(
1972
).
46.
C. V.
Rao
,
D. M.
Wolf
, and
A. P.
Arkin
,
Nature (London)
420
,
231
(
2002
).
47.
A.
Eldar
and
M. B.
Elowitz
,
Nature (London)
467
,
167
(
2010
).
48.
C.
Chatfield
,
The Analysis of Time Series: An Introduction
(
Chapman and Hall/CRC
,
2004
).
49.
W. H.
Press
 et al,
Numerical Recipes in C: The Art of Scientific Scientific Computing
(
Cambridge University Press
,
1992
).
50.
V.
Shahrezaei
,
J. F.
Ollivier
, and
P. S.
Swain
,
Mol. Sys. Biol.
4
,
196
(
2008
).
You do not currently have access to this content.