A multiscale model for a colloid-polymer mixture is developed. The colloids are described as point particles interacting with each other and with the polymers with strongly repulsive potentials, while polymers interact with each other with a softer potential. The fluid in the suspension is taken into account by the multiparticle collision dynamics method (MPC). Considering a slit geometry where the suspension is confined between parallel repulsive walls, different possibilities for the hydrodynamic boundary conditions (b.c.) at the walls (slip versus stick) are treated. Quenching experiments are considered, where the system volume is suddenly reduced (keeping the density of the solvent fluid constant, while the colloid and polymer particle numbers are kept constant) and thus an initially homogeneous system is quenched deeply into the miscibility gap, where it is unstable. For various relative concentrations of colloids and polymers, the time evolution of the growing colloid-rich and polymer-rich domains are studied by molecular dynamics simulation, taking hydrodynamic effects mediated by the solvent into account via MPC. It is found that the domain size ℓd(t) grows with time t as ℓd(t) ∝ t1/3 for stick and (at late stages) as ℓd(t) ∝ t2/3 for slip b.c., while break-up of percolating structures can cause a transient “arrest” of growth. While these findings apply for films that are 5–10 colloid diameters wide, for ultrathin films (1.5 colloid diameters wide) a regime with ℓd(t) ∝ t1/2 is also identified for rather shallow quenches.

1.
P. C.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
Ithaca, NY
,
1979
).
2.
F.
Oosawa
and
S.
Asakura
,
J. Chem. Phys.
22
,
1255
(
1954
).
3.
W. C. K.
Poon
,
J. Phys.: Condens. Matter
14
,
R859
(
2002
).
4.
P. N.
Pusey
, in
Liquids, Freezing, and Glass Transition
, edited by
J. P.
Hansen
,
D.
Levesque
, and
J.
Zinn-Justin
(
North-Holland
,
Amsterdam
,
1991
), p.
763
.
5.
W. C. K.
Poon
,
E. R.
Weeks
, and
C. P.
Royall
,
Soft Matter
8
,
21
(
2012
).
6.
C. P.
Royall
,
W. C. K.
Poon
, and
E. R.
Weeks
,
Soft Matter
9
,
17
(
2013
).
7.
D. G. A. L.
Aarts
,
M.
Schmidt
, and
H. N. W.
Lekkerkerker
,
Science
304
,
847
(
2004
).
8.
D. G. A. L.
Aarts
,
R. P. A.
Dullens
, and
H. N. W.
Lekkerkerker
,
New J. Phys.
7
,
40
(
2005
).
9.
Y.
Hennequin
,
D. G. A. L.
Aarts
,
J. O.
Indekeu
,
H. N. W.
Lekkerkerker
, and
D.
Bonn
,
Phys. Rev. Lett.
100
,
178305
(
2008
).
10.
D. G. A. L.
Aarts
,
H. N. W.
Lekkerkerker
,
H.
Guo
,
G.
Wegdam
, and
D.
Bonn
,
Phys. Rev. Lett.
95
,
164503
(
2005
).
11.
H. N. W.
Lekkerkerker
,
V. W. A.
de Villeneuve
,
J. W. J.
de Folter
,
M.
Schmidt
,
Y.
Hennequin
,
D.
Bonn
,
J. O.
Indekeu
, and
D. G. A. L.
Aarts
,
Eur. Phys. J. B
64
,
341
(
2008
).
12.
J.
Zausch
,
P.
Virnau
,
K.
Binder
,
J.
Horbach
, and
R. L. C.
Vink
,
J. Chem. Phys.
130
,
064906
(
2009
).
13.
H. N. W.
Lekkerkerker
,
W. C. A.
Poon
,
P. N.
Pusey
,
A.
Stroobants
, and
P.
Warrem
,
Europhys. Lett.
20
,
559
(
1992
).
14.
J. M.
Brader
,
R.
Evans
, and
M.
Schmidt
,
Mol. Phys.
101
,
3349
(
2003
).
15.
M.
Dijkstra
,
J. M.
Brader
, and
R.
Evans
,
J. Phys.: Condens. Matter
11
,
10079
(
1999
).
16.
M.
Dijkstra
and
R.
van Roij
,
Phys. Rev. Lett.
89
,
208303
(
2002
).
17.
P. G.
Bolhuis
,
A. A.
Louis
, and
J.-P.
Hansen
,
Phys. Rev. Lett.
89
,
128302
(
2002
).
18.
M.
Schmidt
,
A.
Fortini
, and
M.
Dijkstra
,
J. Phys.: Condens. Matter
15
,
S3411
(
2003
).
19.
R. L. C.
Vink
and
J.
Horbach
,
J. Chem. Phys.
121
,
3253
(
2004
).
20.
R. L. C.
Vink
and
J.
Horbach
,
J. Phys.: Condens. Matter
16
,
3807
(
2004
).
21.
R. L. C.
Vink
,
J.
Horbach
, and
K.
Binder
,
J. Chem. Phys.
122
,
134905
(
2005
).
22.
R. L. C.
Vink
,
J.
Horbach
, and
K.
Binder
,
Phys. Rev. E
71
,
011401
(
2005
).
23.
A.
De Virgiliis
,
R. L. C.
Vink
,
J.
Horbach
, and
K.
Binder
,
Europhys. Lett.
77
,
60002
(
2007
).
24.
K.
Binder
,
J.
Horbach
,
R. L. C.
Vink
, and
A.
De Virgiliis
,
Soft Matter
4
,
1555
(
2008
).
25.
A.
Statt
,
A.
Winkler
,
P.
Virnau
, and
K.
Binder
,
J. Phys.: Condens. Matter
24
,
464122
(
2012
).
26.
S. M.
Ilett
,
A.
Orrock
,
W. C. K.
Poon
, and
P. N.
Pusey
,
Phys. Rev. E
51
,
1344
(
1995
).
27.
B.-H.
Chen
,
B.
Payandeh
, and
M.
Robert
,
Phys. Rev. E
62
,
2369
(
2000
).
28.
L.
Gelb
,
K.
Gubbins
,
R.
Radhakrishnan
, and
M.
Sliwinska-Bartkowiak
,
Rep. Prog. Phys.
62
,
1573
(
1999
).
29.
J. S.
Rowlinson
and
B.
Widom
,
Molecular Theory of Capillarity
(
Clarendon
,
Oxford
,
1982
).
30.
S.
Dietrich
, in
Phase Transitions and Critical Phenomena
, edited by
C.
Domb
and
J. L.
Lebowitz
(
Academic
,
London
,
1988
), Vol.
12
, p.
1
.
31.
D.
Bonn
,
J.
Eggers
,
J.
Indekeu
,
J.
Meunier
, and
E.
Rolley
,
Rev. Mod. Phys.
81
,
739
(
2009
).
32.
A. J.
Bray
,
Adv. Phys.
43
,
357
(
1994
).
33.
K.
Binder
and
P.
Fratzl
, in
Phase Transformation in Materials
, edited by
G.
Kostorz
(
Wiley-VCH
,
Weinheim
,
2001
), p.
409
.
34.
A.
Onuki
,
Phase Transition Dynamics
(
Cambridge University Press
,
Cambridge
,
2002
).
35.
R. C.
Desai
and
R.
Kapral
,
Dynamics of Self-organized and Self-assembled Structures
(
Cambridge University Press
,
Cambridge
,
2009
).
36.
Kinetics of Phase Transitions
, edited by
S.
Puri
and
V.
Wadhavan
(
CRC
,
Boca Raton
,
2009
).
37.
R. D.
Piner
,
J.
Zhu
,
F.
Xu
,
S.
Hong
, and
C. A.
Mirkin
,
Science
283
,
661
(
1999
).
38.
Y.
Gogotsi
,
J. A.
Libera
,
A.
Güvenc-Yazicioglu
, and
C. M.
Megandis
,
Appl. Phys. Lett.
79
,
1021
(
2001
).
39.
T. M.
Squires
and
S. R.
Quake
,
Rev. Mod. Phys.
77
,
977
(
2005
).
40.
Handbook of Porous Solids
, edited by
F.
Schlüth
,
K. S. W.
Sing
, and
J.
Weitkamp
(
Wiley-VCH
,
Weinheim
,
2002
).
41.
S. M.
Auerbach
,
K. A.
Carrado
, and
P. K.
Dutta
,
Handbook of Zeolite Science and Technology
(
Marcel Dekker
,
New York
,
2003
).
42.
K.
Binder
,
J. Non-Equilib. Thermodyn.
23
,
1
(
1998
).
43.
S.
Puri
,
J. Phys.: Condens. Matter
17
,
R101
(
2005
).
44.
K.
Binder
,
S.
Puri
,
S. K.
Das
, and
J.
Horbach
,
J. Stat. Phys.
138
,
51
(
2010
).
45.
P. K.
Jaiswal
,
S.
Puri
, and
S. K.
Das
,
Europhys. Lett.
97
,
16005
(
2012
).
46.
P. K.
Jaiswal
,
K.
Binder
, and
S.
Puri
,
Phys. Rev. E
85
,
041602
(
2012
).
47.
S. K.
Das
,
S.
Puri
,
J.
Horbach
, and
K.
Binder
,
Phys. Rev. Lett.
96
,
016107
(
2006
).
48.
S. K.
Das
,
S.
Puri
,
J.
Horbach
, and
K.
Binder
,
Phys. Rev. E
73
,
031604
(
2006
).
49.
K.
Bucior
,
L.
Yelash
, and
K.
Binder
,
Phys. Rev. E
77
,
051602
(
2008
).
50.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
,
Oxford
,
1987
).
51.
Monte Carlo and Molecular Dynamics of Condensed Matter
, edited by
K.
Binder
and
G.
Ciccotti
(
Italian Physical Society
,
Bologna
,
1996
).
52.
D. C.
Rapaport
,
The Art of Molecular Dynamics Simulation
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2004
).
53.
J.
Zausch
,
J.
Horbach
,
P.
Virnau
, and
K.
Binder
,
J. Phys.: Condens. Matter
22
,
104120
(
2010
).
54.
P.
Bolhuis
and
A. A.
Louis
,
Macromolecules
35
,
1860
(
2002
).
55.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
54
,
5237
(
1971
).
56.
G.
Krausch
,
Mater Sci. Eng. R.
14
,
1
(
1995
).
57.
M.
Geoghegan
and
G.
Krausch
,
Prog. Polym. Sci.
28
,
261
(
2003
).
58.
N. A. M.
Verhaegh
,
J. S.
van Duijneveldt
,
J. K. G.
Dhont
, and
H. N. W.
Lekkerkerker
,
Physica A
230
,
409
(
1996
).
59.
A. E.
Bailey
 et al,
Phys. Rev. Lett.
99
,
205701
(
2007
).
60.
E. A.
Jamie
,
R. P.
Dullens
, and
D. G.
Aarts
,
J. Phys.: Condens. Matter
24
,
284120
(
2012
).
61.
E. A.
Jamie
,
R. P.
Dullens
, and
D. G.
Aarts
,
J. Phys. Chem. B
115
,
13168
(
2011
).
62.
T.
Ihle
and
D.
Kroll
,
Phys. Rev. E
63
,
020201
(
2001
).
63.
A.
Malevanets
and
R.
Kapral
,
J. Chem. Phys.
110
,
8605
(
1999
).
64.
A.
Malevanets
and
R.
Kapral
,
J. Chem. Phys.
112
,
7260
(
2000
).
65.
T.
Ihle
and
D. M.
Kroll
,
Phys. Rev. E
67
,
066705
(
2003
).
66.
T.
Ihle
,
E.
Tüzel
, and
D. M.
Kroll
,
Phys. Rev. E
72
,
046707
(
2005
).
67.
M.
Ripoll
,
M.
Mussawisade
,
R. G.
Winkler
, and
G.
Gompper
,
Phys. Rev. E
72
,
016701
(
2005
).
68.
G.
Gompper
,
T.
Ihle
,
D. M.
Kroll
, and
R. G.
Winkler
,
Adv. Polym. Sci.
221
,
1
(
2009
).
69.
H.
Noguchi
and
G.
Gompper
,
Phys. Rev. E
78
,
016706
(
2008
).
70.
C. C.
Huang
,
A.
Chatterji
,
G.
Sutmann
,
G.
Gompper
, and
R. G.
Winkler
,
J. Comput. Phys.
229
,
168
(
2010
).
71.
A.
Lamura
,
G.
Gompper
,
T.
Ihle
, and
D.
Kroll
,
EPL
56
,
319
(
2001
).
72.
R.
Kapral
,
Adv. Chem. Phys.
140
,
89
(
2008
).
73.
D. P.
Landau
and
K.
Binder
,
A Guide to Monte Carlo Simulation in Statistical Physics
(
Cambridge University Press
,
Cambridge
,
2009
).
74.
P.
Virnau
and
M.
Müller
,
J. Chem. Phys.
120
,
10925
(
2004
).
75.
K.
Binder
,
Phys. Rev. A
25
,
1699
(
1982
).
76.
Finite Size Scaling and Numerical Simulation of Statistical Systems
, edited by
V. P.
Privman
(
World Scientific
,
Singapore
,
1990
).
77.
A.
Winkler
, Ph.D. dissertation,
Johannes Gutenberg Universität Mainz
,
2012
(unpublished).
78.
D.
Reith
,
K.
Bucior
,
L.
Yelash
,
P.
Virnau
, and
K.
Binder
,
J. Phys.: Condens. Matter
24
,
115102
(
2012
).
79.
H.
Tanaka
,
J. Phys.: Condens. Matter
12
,
R207
(
2000
).
80.
See http://www.hlrs.de/systems/platforms/cray-xe6-hermit/ for more details about the HERMIT supercomputer.
81.
J. K.
Whitmer
and
E.
Luijten
,
J. Phys.: Condens. Matter
22
,
104106
(
2010
).
82.
M.
Ripoll
,
R. G.
Winkler
, and
G.
Gompper
,
Eur. Phys. J. E
23
,
349
(
2007
).
83.
A.
Milchev
,
K.
Binder
, and
D. W.
Heermann
,
Z. Phys. B
63
,
521
(
1986
).
84.
J. M.
Ortiz de Zarate
and
J. V.
Sengers
,
Hydrodynamic Fluctuations in Fluids and Fluid Mixtures
(
Elsevier
,
Amsterdam
,
2006
).
85.
E. D.
Siggia
,
Phys. Rev. A
20
,
595
(
1979
).
86.
S.
Ahmad
,
S. K.
Das
, and
S.
Puri
,
Phys. Rev. E
82
,
040107
(
2010
).
87.
J. K. G.
Dhont
,
J. Chem. Phys.
105
,
5112
(
1996
).
88.
S.
Ramachandran
,
S.
Komura
, and
G.
Gompper
,
EPL
89
,
56001
(
2010
).
89.
I. M.
Lifshitz
and
V. V.
Slyozov
,
J. Phys. Chem. Solids
19
,
35
(
1961
).
90.
K.
Binder
and
D.
Stauffer
,
Phys. Rev. Lett.
33
,
1006
(
1974
).
91.
K.
Binder
,
Phys. Rev. B
15
,
4425
(
1977
).
92.
M.
San Miguel
,
M.
Grant
, and
J. D.
Gunton
,
Phys. Rev. A
31
,
1001
(
1985
).
93.
H.
Furukawa
,
Phys. Rev. A
31
,
1103
(
1985
).
94.
H.
Furukawa
,
Phys. Rev. A
36
,
2288
(
1987
).
95.
A. J.
Wagner
and
J. M.
Yeomans
,
Phys. Rev. Lett.
80
,
1429
(
1998
).
96.
K.
Mecke
,
Phys. Rev. E
53
,
4794
(
1996
).
97.
K.
Mecke
,
Eur. Phys. J. B
8
,
99
(
1999
).
98.
D. A.
Huse
,
Phys. Rev. B
34
,
7845
(
1986
).
99.
D. A.
Edward
,
H.
Brenner
, and
D. T.
Wasan
,
Interfacial Transport Processes and Rheology
(
Butterworth-Heinemann
,
Boston
,
1991
).
100.
H.
Brenner
and
V.
Ganesan
,
Phys. Rev. E
61
,
6879
(
2000
).
101.
M. M.
Denn
,
Annu. Rev. Fluid Mech.
33
,
265
(
2001
).
102.
H. C.
Öttinger
,
J. Non-Newtonian Fluid Mech.
152
,
66
(
2008
).
103.
G.
Sutmann
,
R. G.
Winkler
, and
G.
Gompper
, “
Simulating hydrodynamics of complex fluids: Multi-particle collision dynamics coupled to molecular dynamics on massively parallel computers
” (unpublished).
104.
The time-dependent “coexistence densities” ηv(t) and η(t) are simply the peak positions of the density distribution in the 4 × 4 subsystems. It turned out that this did not influence the values of the Euler characteristic which means that the local time-dependent “coexistence densities” converge in a symmetric manner to the (final) equilibrium coexistence densities ηv and η.
You do not currently have access to this content.