The hierarchical equations of motion (HEOM) method was applied to calculate the emission spectra of molecular aggregates using the Frenkel exciton model. HEOM equations for the one-exciton excited state were first propagated until equilibration. The reduced density operator and auxiliary density operators (ADOs) were used to characterize the coupled system-bath equilibrium. The dipole-dipole correlation functions were then calculated to obtain the emission spectra of model dimers, and the B850 band of light-harvesting complex II (LH2) in purple bacteria. The effect of static disorder on equilibrium excited state and the emission spectra of LH2 was also explicitly considered. Several approximation schemes, including the high temperature approximation (HTA) of the HEOM, a modified version of the HTA, the stochastic Liouville equation approach, the perturbative time-local and time-nonlocal generalized quantum master equations, were assessed in the calculation of the equilibrium excited state and emission spectra.

1.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford
,
New York
,
1995
).
2.
J. R.
Lakowicz
,
Principles of Fluorescence Spectroscopy
, 3rd ed. (
Spinger-Verlag
,
Berlin
,
2006
).
3.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems
, 3rd ed. (
Wiley-VCH
,
Weinheim
,
2011
).
4.
S. H.
Lin
,
C. H.
Chang
,
K. K.
Liang
,
R.
Chang
,
Y. J.
Shiu
,
J. M.
Zhang
,
T.-S.
Yang
,
M.
Hayashi
, and
F. C.
Hsu
,
Adv. Chem. Phys.
121
,
1
(
2002
).
5.
M.
Yang
and
G. R.
Fleming
,
Chem. Phys.
282
,
163
(
2002
).
6.
G. S.
Engel
,
T. R.
Calhoun
,
E. L.
Read
,
T.-K.
Ahn
,
T.
Mancal
,
Y.-C.
Cheng
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature (London)
446
,
782
(
2007
).
7.
Y.-C.
Cheng
and
G. R.
Fleming
,
Annu. Rev. Phys. Chem.
60
,
241
(
2009
).
8.
D.
Beljonne
,
C.
Curutchet
,
G. D.
Scholes
, and
R. J.
Silbey
,
J. Phys. Chem. B
113
,
6583
(
2009
).
9.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234110
(
2009
).
10.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234111
(
2009
).
11.
E.
Collini
and
G. D.
Scholes
,
Science
323
,
369
(
2009
).
12.
E.
Collini
,
C. Y.
Wong
,
K. E.
Wilk
,
P. M. G.
Curmi
,
P.
Brumer
, and
G. D.
Scholes
,
Nature (London)
463
,
644
(
2010
).
13.
14.
F.
Spano
,
J. Chem. Phys.
114
,
5376
(
2001
).
15.
F.
Spano
,
J. Am. Chem. Soc.
131
,
4267
(
2009
).
16.
J.
Cao
,
L. W.
Ungar
, and
G. A.
Voth
,
J. Chem. Phys.
104
,
4189
(
1995
).
17.
E.
Jezek
and
N.
Makri
,
J. Phys. Chem. A
105
,
2851
(
2001
).
18.
J. M.
Moix
,
Y.
Zhao
, and
J.
Cao
,
Phys. Rev. B
85
,
115412
(
2012
).
19.
C.
Mak
and
R.
Egger
,
Adv. Chem. Phys.
93
,
39
(
1996
).
20.
J.
Roden
,
A.
Eisfeld
,
W.
Wolff
, and
W. T.
Strunz
,
Phys. Rev. Lett.
103
,
058301
(
2009
).
21.
J.
Roden
,
W. T.
Strunz
, and
A.
Eisfeld
,
J. Chem. Phys.
134
,
034902
(
2011
).
22.
Y.
Tanimura
and
R. K.
Kubo
,
J. Phys. Soc. Jpn.
58
,
101
(
1989
).
24.
Y.
Tanimura
,
J. Phys. Soc. Jpn.
75
,
082001
(
2006
).
25.
R.-X.
Xu
,
P.
Cui
,
X.-Q.
Li
,
Y.
Mo
, and
Y.-J.
Yan
,
J. Chem. Phys.
122
,
041103
(
2005
).
26.
A.
Ishizaki
and
Y.
Tanimura
,
J. Phys. Soc. Jpn.
74
,
3131
(
2005
).
27.
A.
Ishizaki
and
G. R.
Fleming
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
17255
(
2009
).
28.
J.
Zhu
,
S.
Kais
,
P.
Rebentrost
, and
A.
Aspuru-Guzik
,
J. Phys. Chem. B
115
,
1531
(
2011
).
29.
J.
Strümpfer
and
K.
Schulten
,
J. Chem. Phys.
131
,
225101
(
2009
).
30.
J.
Strümpfer
and
K.
Schulten
,
J. Chem. Phys.
134
,
095102
(
2011
).
31.
L.-P.
Chen
,
R.-H.
Zheng
,
Q.
Shi
, and
Y.-J.
Yan
,
J. Chem. Phys.
131
,
094502
(
2009
).
32.
J.-J.
Ding
,
J.
Xu
,
J.
Hu
,
R.-X.
Xu
, and
Y.
Yan
,
J. Chem. Phys.
135
,
164107
(
2011
).
33.
A.
Gelzinis
,
D.
Abramavicius
, and
L.
Valkunas
,
Phys. Rev. B
84
,
245430
(
2011
).
34.
L.-P.
Chen
,
R.-H.
Zheng
,
Q.
Shi
, and
Y.-J.
Yan
,
J. Chem. Phys.
132
,
024505
(
2010
).
35.
L.-P.
Chen
,
R.-H.
Zheng
,
Y.-Y.
Jing
, and
Q.
Shi
,
J. Chem. Phys.
134
,
194508
(
2011
).
36.
Y.
Tanimura
and
S.
Mukamel
,
J. Phys. Soc. Jpn.
63
,
66
(
1994
).
37.
A.
Ishizaki
and
Y.
Tanimura
,
Chem. Phys.
347
,
185
(
2008
).
38.
R.-X.
Xu
,
Y.
Chen
,
P.
Cui
,
H.-W.
Ke
, and
Y.-J.
Yan
,
J. Phys. Chem. A
111
,
9618
(
2007
).
39.
Y.
Yan
,
F.
Yang
,
Y.
Liu
, and
J.
Shao
,
Chem. Phys. Lett.
395
,
216
(
2004
).
40.
Y.
Zhou
and
J.
Shao
,
J. Chem. Phys.
128
,
034106
(
2008
).
41.
A. G.
Dijkstra
and
Y.
Tanimura
,
Phys. Rev. Lett.
104
,
250401
(
2010
).
42.
L.-L.
Zhu
,
H.
Liu
, and
Q.
Shi
,
J. Chem. Phys.
137
,
194106
(
2012
).
43.
A. G.
Redfield
,
IBM J. Res.
1
,
19
(
1957
).
44.
W. T.
Pollard
,
A. K.
Felts
, and
R. A.
Friesner
,
Adv. Chem. Phys.
93
,
77
(
1996
).
45.
K.
Blum
,
Density Matrix Theory and Applications
(
Plenum
,
New York
,
1996
).
46.
H. P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University Press
,
New York
,
2002
).
47.
Q.
Shi
,
L. P.
Chen
,
G. J.
Nan
,
R. X.
Xu
, and
Y. J.
Yan
,
J. Chem. Phys.
130
,
084105
(
2009
).
48.
Q.
Shi
,
L. P.
Chen
,
G. J.
Nan
,
R. X.
Xu
, and
Y. J.
Yan
,
J. Chem. Phys.
130
,
164518
(
2009
).
49.
R.
Kubo
,
J. Phys. Soc. Jpn.
9
,
935
(
1954
).
50.
P. W.
Anderson
,
J. Phys. Soc. Jpn.
9
,
316
(
1954
).
51.
W. M.
Zhang
,
T.
Meier
,
V.
Chernyak
, and
S.
Mukamel
,
J. Chem. Phys.
108
,
7763
(
1998
).
52.
S.
Mukamel
and
D.
Abramavicius
,
Chem. Rev.
104
,
2073
(
2004
).
53.
K.
Ohta
,
M.
Yang
, and
G. R.
Fleming
,
J. Chem. Phys.
115
,
7609
(
2001
).
54.
M.
Schröder
,
U.
Kleinekathöfer
, and
M.
Schreiber
,
J. Chem. Phys.
124
,
084903
(
2006
).
55.
T.
Renger
and
R. A.
Marcus
,
J. Chem. Phys.
116
,
9997
(
2002
).
56.
T.
Renger
and
R. A.
Marcus
,
J. Phys. Chem. B
106
,
1809
(
2002
).
57.
T.
la Cour Jansen
,
W.
Zhuang
, and
S.
Mukamel
,
J. Chem. Phys.
121
,
10577
(
2004
).
58.
T.
la Cour Jansen
,
T.
Hayashi
,
W.
Zhuang
, and
S.
Mukamel
,
J. Chem. Phys.
123
,
114504
(
2005
).
59.
H.
Haken
and
P.
Reineker
,
Z. Phys.
249
,
253
(
1972
).
60.
H.
Haken
and
G.
Strobl
,
Z. Phys.
262
,
135
(
1973
).
61.
M.
Schröder
,
M.
Schreiber
, and
U.
Kleinekathöfer
,
J. Chem. Phys.
126
,
114102
(
2007
).
62.
C.
Meier
and
D.
Tannor
,
J. Chem. Phys.
111
,
3365
(
1999
).
63.
A.
Pomyalov
and
D. J.
Tannor
,
J. Chem. Phys.
123
,
204111
(
2005
).
64.
U.
Kleinekathöfer
,
J. Chem. Phys.
121
,
2505
(
2004
).
65.
J-Aggregates
, edited by
T.
Kobayashi
(
World Scientific
,
Singapore
,
1996
).
66.
P. A.
Frantsuzov
,
J. Chem. Phys.
111
,
2075
(
1999
).
67.
Y.
Jung
and
J.
Cao
,
J. Chem. Phys.
117
,
3822
(
2002
).
68.
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
131
,
034511
(
2008
).
69.
H.
Grabert
,
P.
Schramm
, and
G. L.
Ingold
,
Phys. Rep.
168
,
115
(
1988
).
70.
N.
Makri
and
D.
Makarov
,
J. Chem. Phys.
102
,
4600
(
1995
).
71.
N.
Makri
and
D.
Makarov
,
J. Chem. Phys.
102
,
4611
(
1995
).
72.
V.
Romero-Rochin
and
I.
Oppenheim
,
Physica A
155
,
52
(
1989
).
73.
E.
Geva
,
E.
Rosenman
, and
D. J.
Tannor
,
J. Chem. Phys.
113
,
1380
(
2000
).
74.
G.
McDermott
,
S. M.
Prince
,
A. A.
Freer
,
A. M.
Hawthornthwaite-Lawless
,
M. Z.
Papiz
,
R. J.
Cogdell
, and
N. W.
Isaacs
,
Nature (London)
374
,
517
(
1995
).
75.
S.
Jang
and
R. J.
Silbey
,
J. Chem. Phys.
118
,
9324
(
2003
).
76.
A.
Damjanović
,
I.
Kosztin
,
U.
Kleinekathöfer
, and
K.
Schulten
,
Phys. Rev. E
65
,
031919
(
2002
).
77.
A. M.
van Oijen
,
M.
Ketelaars
,
J.
Köhler
,
T. J.
Aartsma
, and
J.
Schmidt
,
Science
285
,
400
(
1999
).
78.
H.
Sumi
,
J. Phys. Chem. B
103
,
252
(
1999
).
79.
G. D.
Scholes
and
G. R.
Fleming
,
J. Phys. Chem. B
104
,
1854
(
2000
).
80.
S.
Jang
,
M. D.
Newton
, and
R. J.
Silbey
,
Phys. Rev. Lett.
92
,
218301
(
2004
).
You do not currently have access to this content.