Local structure characterization with the bond-orientational order parameters q4, q6, … introduced by Steinhardt et al. [Phys. Rev. B28, 784 (1983) https://doi.org/10.1103/PhysRevB.28.784] has become a standard tool in condensed matter physics, with applications including glass, jamming, melting or crystallization transitions, and cluster formation. Here, we discuss two fundamental flaws in the definition of these parameters that significantly affect their interpretation for studies of disordered systems, and offer a remedy. First, the definition of the bond-orientational order parameters considers the geometrical arrangement of a set of nearest neighboring (NN) spheres, NN(p), around a given central particle p; we show that the choice of neighborhood definition can have a bigger influence on both the numerical values and qualitative trend of ql than a change of the physical parameters, such as packing fraction. Second, the discrete nature of neighborhood implies that NN(p) is not a continuous function of the particle coordinates; this discontinuity, inherited by ql, leads to a lack of robustness of the ql as structure metrics. Both issues can be avoided by a morphometric approach leading to the robust Minkowski structure metrics

$q_l^{\prime }$
ql⁠. These
$q_l^{\prime }$
ql
are of a similar mathematical form as the conventional bond-orientational order parameters and are mathematically equivalent to the recently introduced Minkowski tensors [G. E. Schröder-Turk et al., Europhys. Lett.90, 34001 (2010) https://doi.org/10.1209/0295-5075/90/34001; S. Kapfer et al., Phys. Rev. E85, 030301R (2012) https://doi.org/10.1103/PhysRevE.85.030301].

1.
P.
Steinhardt
,
D.
Nelson
, and
M.
Ronchetti
,
Phys. Rev. B
28
,
784
(
1983
).
2.
D.
Nelson
and
B.
Halperin
,
Phys. Rev. B
19
,
2457
(
1979
).
3.
P.
ten Wolde
,
M.
Ruiz-Montero
, and
D.
Frenkel
,
Phys. Rev. Lett.
75
,
2714
(
1995
).
4.
R.
Ni
and
M.
Dijkstra
,
J. Chem. Phys.
134
,
034501
(
2011
).
5.
W.-S.
Xu
,
Z.-Y.
Sun
, and
L.-J.
An
,
Eur. Phys. J. E
31
,
377
(
2010
).
6.
W.
Lechner
and
C.
Dellago
,
J. Chem. Phys.
129
,
114707
(
2008
).
7.
L.-C.
Valdes
,
F.
Affouard
,
M.
Descamps
, and
J.
Habasaki
,
J. Chem. Phys.
130
,
154505
(
2009
).
8.
T.
Kawasaki
and
H.
Tanaka
,
J. Phys.: Condens. Matter
22
,
232102
(
2010
).
9.
H.
Wang
and
H.
Gould
,
Phys. Rev. E
76
,
031604
(
2007
).
10.
Y.
Wang
,
S.
Teitel
, and
C.
Dellago
,
J. Chem. Phys.
122
,
214722
(
2005
).
11.
A.
Keys
and
S.
Glotzer
,
Phys. Rev. Lett.
99
,
235503
(
2007
).
12.
C.
Iacovella
,
A.
Keys
,
M.
Horsch
, and
S.
Glotzer
,
Phys. Rev. E
75
,
040801
(
2007
).
13.
C.
Chakravarty
,
P. G.
Debenedetti
, and
F. H.
Stillinger
,
J. Chem. Phys.
126
,
204508
(
2007
).
14.
F.
Calvo
and
D. J.
Wales
,
J. Chem. Phys.
131
,
134504
(
2009
).
15.
J.
Hernández-Guzmán
and
E. R.
Weeks
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
15198
(
2009
).
16.
K.
Binder
and
W.
Kob
,
Glassy Materials and Disordered Solids: An Introduction to Their Statistical Mechanics (Revised Edition)
(
World Scientific
,
2011
).
17.
A.
Ikeda
and
K.
Miyazaki
,
Phys. Rev. Lett.
106
,
015701
(
2011
).
18.
A. V.
Mokshin
and
J.-L.
Barrat
,
J. Chem. Phys.
130
,
034502
(
2009
).
19.
H.
Tanaka
,
T.
Kawasaki
,
H.
Shintani
, and
K.
Watanabe
,
Nature Mater.
9
,
324
(
2010
).
20.
K.
Lochmann
,
A.
Anikeenko
,
A.
Elsner
,
N.
Medvedev
, and
D.
Stoyan
,
Eur. Phys. J. B
53
,
67
(
2006
).
21.
T.
Schilling
,
H.
Schöpe
,
M.
Oettel
,
G.
Opletal
, and
I.
Snook
,
Phys. Rev. Lett.
105
,
025701
(
2010
).
22.
J. S.
van Duijneveldt
and
D.
Frenkel
,
J. Chem. Phys.
96
,
4655
(
1992
).
23.
A.
Wouterse
and
A. P.
Philipse
,
J. Chem. Phys.
125
,
194709
(
2006
).
24.
N.
Duff
and
D.
Lacks
,
Phys. Rev. E
75
,
031501
(
2007
).
25.
S.
Abraham
and
B.
Bagchi
,
Phys. Rev. E
78
,
051501
(
2008
).
26.
This expression assumes that neighborhood is a symmetric concept, such that
$a\in \protect \mathrm{NN}(b)$
a NN (b)
implies that
$b\in \protect \mathrm{NN}(a)$
b NN (a)
. This is correct for the definitions of neighborhood based on cutoff radii and on the Delaunay triangulation, but not for the definition based on a fixed number of neighbors.
27.
C.
Kelchner
,
S.
Plimpton
, and
J.
Hamilton
,
Phys. Rev. B
58
,
11085
(
1998
).
28.
S.
Edwards
and
D.
Grinev
,
Physica A
302
,
162
(
2001
).
29.
M.
Bargiel
and
E. M.
Tory
,
Adv. Powder Technol.
12
,
533
(
2001
).
30.
P.
Armstrong
,
C.
Knieke
,
M.
Mackovic
,
G.
Frank
,
A.
Hartmaier
,
M.
Göken
, and
W.
Peukert
,
Acta Mater.
57
,
3060
(
2009
).
31.
C.
Gray
and
K.
Gubbins
,
Theory of Molecular Fluids. Volume 1: Fundamentals
(
Clarendon
,
Oxford
,
1984
).
32.
E. P.
Wigner
,
Group Theory and its Application to the Quantum Mechanics of Atomic Spectra
(
Academic Press
,
New York and London
,
1959
).
33.
Although we will not use the global bond order parameter Ql, we define it for the sake of completeness as |$Q_l = \sqrt {\frac{4\pi }{2l + 1} \sum_{m = - l}^l \big| \frac {1} {\mathcal{N}} \sum_{a = 1}^N \sum_{b \in {\rm NN} (a)}Y_{lm}(\theta_{ab}, \varphi_{ab})\big|^{2}} $|Ql=4π2l+1m=ll|1Na=1Nb NN (a)Ylm(θab,φab)|2. N is the number of spherical particles and |$\mathcal {N}=\sum_{a = 1}^N {n(a)}$|N=a=1Nn(a) the number of all bonds. That is, the average over all bonds is taken inside the norm. For disordered systems the sum over the Ylm vanishes as |$\mathcal{N}^{-1/2}$|N1/2, while it remains finite for common crystalline structures.1,58
34.
T.
Aste
,
M.
Saadatfar
, and
T.
Senden
,
Phys. Rev. E
71
,
061302
(
2005
).
36.
M.
Yiannourakou
,
I. G.
Economou
, and
I. A.
Bitsanis
,
J. Chem. Phys.
133
,
224901
(
2010
).
37.
C. L.
Martin
,
Phys. Rev. E
77
,
031307
(
2008
).
38.
S. C.
Kapfer
,
W.
Mickel
,
K.
Mecke
, and
G. E.
Schröder-Turk
,
Phys. Rev. E
85
,
030301
R
(
2012
).
39.
Normalized bond order functions are
$q_{lm}(a):=\big(\sum \nolimits _{i = 1}^{n(a)} {Y_{lm} }\big)/q_l(a)$
qlm(a):=i=1n(a)Ylm/ql(a)
for particle a and the dot-product is
$d_{ab}:=\sum \nolimits _{m=-l}^{l} q_{lm}(a)q_{lm}^*(b)$
dab:=m=llqlm(a)qlm*(b)
of spheres a and b. A particle is defined as member of a solid-like cluster, if the dot-product with n0 NN exceeds a certain threshold d0.
40.
A.
Mokshin
and
J.-L.
Barrat
,
Phys. Rev. E
82
,
021505
(
2010
).
41.
A.
Panaitescu
and
A.
Kudrolli
,
Phys. Rev. E
81
,
060301
R
(
2010
).
42.
A. B.
de Oliveira
,
P. A.
Netz
,
T.
Colla
, and
M. C.
Barbosa
,
J. Chem. Phys.
125
,
124503
(
2006
).
43.
Z.
Yan
,
S. V.
Buldyrev
,
P.
Kumar
,
N.
Giovambattista
,
P.
Debenedetti
, and
H.
Stanley
,
Phys. Rev. E
76
,
051201
(
2007
).
44.
M.
Wallace
and
B.
Joós
,
Phys. Rev. Lett.
96
,
025501
(
2006
).
45.
A.
Kansal
,
S.
Torquato
, and
F.
Stillinger
,
Phys. Rev. E
66
,
041109
(
2002
).
46.
J. R.
Errington
and
P. G.
Debenedetti
,
Nature (London)
409
,
318
(
2001
).
47.
G.
Odriozola
,
J. Chem. Phys.
131
,
144107
(
2009
).
48.
R.
Kurita
and
E.
Weeks
,
Phys. Rev. E
82
,
011403
(
2010
).
49.
C. B.
Barber
,
D. P.
Dobkin
, and
H.
Huhdanpaa
,
ACM Trans. Math. Softw.
22
,
469
(
1996
).
50.
The definition of NN via the Delaunay graph is equivalent to the definition via Voronoi neighbors: spheres share a Delaunay edge, whenever their respective Voronoi cells have a shared facet (regardless of the area of the Voronoi facet).
51.
V.
Senthil Kumar
and
V.
Kumaran
,
J. Chem. Phys.
124
,
204508
(
2006
).
52.
S.
Matsumoto
,
T.
Nogawa
,
T.
Shimada
, and
N.
Ito
, “
Heat transport in a random packing of hard spheres
,” e-print arXiv:1005.4295 [cond-mat.stat-mech].
53.
S. C.
Kapfer
,
W.
Mickel
,
F. M.
Schaller
,
M.
Spanner
,
C.
Goll
,
T.
Nogawa
,
N.
Ito
,
K.
Mecke
, and
G. E.
Schröder-Turk
,
J. Stat. Mech.: Theory Exp.
2010
,
P11010
(
2010
).
54.
Event driven MD simulations to explore the super-cooled regime use the Matsumoto algorithm from Ref. 52. In this algorithm, spheres are expanded until they touch the closest Voronoi facet or until they reach the final radius. This creates a transient polydisperse ensemble, which is relaxed by thermal motion, followed by an expansion step. This procedure is iterated until a monodisperse HS system at predefined packing fraction is obtained.
55.
L. V.
Woodcock
,
Nature (London)
385
,
141
(
1997
).
56.
P. R.
ten Wolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
,
J. Chem. Phys.
104
,
9932
(
1996
).
57.
J. P.
Troadec
,
A.
Gervois
, and
L.
Oger
,
EPL
42
,
167
(
2007
).
58.
M. D.
Rintoul
and
S.
Torquato
,
J. Chem. Phys.
105
,
9258
(
1996
).
59.
G. E.
Schröder-Turk
,
W.
Mickel
,
S. C.
Kapfer
,
M. A.
Klatt
,
F. M.
Schaller
,
M. J. F.
Hoffmann
,
N.
Kleppmann
,
P.
Armstrong
,
A.
Inayat
,
D.
Hug
,
M.
Reichelsdorfer
,
W.
Peukert
,
W.
Schwieger
, and
K.
Mecke
,
Adv. Mater.
23
,
2535
(
2011
).
60.
R.
Schneider
and
W.
Weil
,
Stochastische Geometrie
, Teubner Skripten zur mathematischen Stochastik (
B.G. Teubner
,
2000
).
61.
G. E.
Schröder-Turk
,
W.
Mickel
,
M.
Schröter
,
G. W.
Delaney
,
M.
Saadatfar
,
T. J.
Senden
,
K.
Mecke
, and
T.
Aste
,
Europhys. Lett.
90
,
34001
(
2010
).
62.
M.
Doi
and
T.
Ohta
,
J. Chem. Phys.
95
,
1242
(
1991
).
63.
G. E.
Schröder-Turk
,
V.
Trond
,
L. D.
Campo
,
S. C.
Kapfer
, and
W.
Mickel
,
Langmuir
27
,
10475
(
2011
).
64.
M. E.
Evans
,
J.
Zirkelbach
,
G. E.
Schröder-Turk
,
A. M.
Kraynik
, and
K.
Mecke
,
Phys. Rev. E
85
,
061401
(
2012
).
65.
S. C.
Kapfer
,
W.
Mickel
,
G. E.
Schröder-Turk
, and
K.
Mecke
, “
Spherical minkowski tensors
,” (unpublished).
66.
J.
Jerphagnon
,
D.
Chemla
, and
R.
Bonneville
,
Adv. Phys.
27
,
609
(
1978
).
67.
C.
Lautensack
,
Random Laguerre Tessellations
(
Verlag Lautensack
,
Bingen, Germany
,
2007
).
68.
H.
Müller
,
Rend. Circ. Mat. Palermo
2
,
119
(
1953
).
69.
B. D.
Lubachevsky
and
F. H.
Stillinger
,
J. Stat. Phys.
60
,
561
(
1990
).
70.
In the LS algorithm,69,71 spheres are continuously expanded with event-driven MD until the pressure exceeds a jamming threshold (jLS). The unjammed LS simulations (uLS) used here are stopped at predefined packing fractions.
71.
M.
Skoge
,
A.
Donev
,
F. H.
Stillinger
, and
S.
Torquato
,
Phys. Rev. E
74
,
041127
(
2006
).
72.
The anisotropy index
$\beta _{\smash{1}}^{0,2}$
β10,2
is the ratio of eigenvalues of
$W_{\smash{1}}^{0,2}$
W10,2
(see Eq. (4)):
$\beta _{\smash{1}}^{0,2}=\xi _{{\min }}/\xi _{{\max }}$
β10,2=ξmin/ξmax
, where ξmin  ⩽ ξmid ⩽ ξmax .
$\beta _{\smash{1}}^{0,2}=1$
β10,2=1
indicates isotropy, lower values of
$\beta _{\smash{1}}^{0,2}$
β10,2
indicate anisotropy.61 
73.
A.
Anikeenko
and
N.
Medvedev
,
Phys. Rev. Lett.
98
,
235504
(
2007
).
74.
W.
Mickel
,
G. E.
Schröder-Turk
, and
K.
Mecke
,
Interface Focus
2
(
5
),
623
(
2012
).
You do not currently have access to this content.